DETECTION OF VIRUSES IN NASOPHARYNGEAL ASPIRATES OF CHILDREN ADMITTED WITH LOWER RESPIRATORY TRACT INFECTIONS AT HOSPITAL SERDANG, SELANGOR, MALAYSIA

MOHAMMADREZA ETEMADI

FPSK(m) 2011 44
DETECTION OF VIRUSES IN NASOPHARYNGEAL ASPIRATES OF CHILDREN ADMITTED WITH LOWER RESPIRATORY TRACT INFECTIONS AT HOSPITAL SERDANG, SELANGOR, MALAYSIA

By

MOHAMMADREZA ETEMADI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

July 2011
Specially dedicated to,
My beloved Mother and Father
Abstract of thesis presented to the Senate of University Putra Malaysia in fulfillment of the requirement for the degree of Master of Science.

DETECTION OF VIRUSES IN NASOPHARYNGEAL ASPIRATES OF CHILDREN ADMITTED WITH LOWER RESPIRATORY TRACT INFECTIONS AT HOSPITAL SERDANG, SELANGOR, MALAYSIA

By

MOHAMMADREZA ETEMADI

July 2011

Chair: Professor Norlijah Othman, MBBS, MRCP

Faculty: Medicine and Health Sciences

Acute lower respiratory tract infections (ALRTIs) continue to be the most important cause of infant and young children mortality worldwide, most of them occurring in developing countries including Southeast Asia and Africa. The role of viruses as major causative agents of ALRTIs in children is increasingly becoming more evident by using sensitive molecular detection methods. The aim of the study was to assess the epidemiology of respiratory viral infections among children less than five years of ages hospitalized with ALRTIs to the Hospital Serdang using conventional and molecular detection methods and to correlate these findings with demographic and clinical
features of the patients in order to determine further common viral atiologic agents. A cross-sectional study was conducted from June until December 2009 among children hospitalized with ALRTI. Nasopharyngeal aspirates were collected from 165 patients based on pre-determined inclusion and exclusion criteria. Direct immunofluorescence assay (DFA) was performed to screen the samples for the presence of respiratory syncytial virus (RSV), human metapneumovirus (HMPV), parainfluenzavirus 1-3 (PIV 1-3), influenza virus type A and B (IFV A & B), and human adenoviruses (HAdV). Negative samples tested by DFA were followed by shell vial culture (SVC), as a supplementary test to enhance the detection of these eight viruses. Viral genomes (RNA/DNA) were extracted and subsequently reverse transcription was done on RNA extracts in order to perform diagnosis using molecular methods. Hemi-nested multiplex RT-PCR was applied for detection of RSV, HMPV, IFV-A and B, PIV 1,2,3, and 4, human rhinoviruses (HRV), human enteroviruses (HEV) and human coronaviruses (HCoV) 229E and OC43. In addition, the presence of human bocavirus (HBoV) and human adenoviruses (HAdV) was investigated separately by nested PCR method. The positive samples using either method were subjected to isolation by cell culture. Vero, HEp-2, HeLa and MRC-5 cell lines were used for isolation of RSV, HAdV and HRV. Selected samples of patients diagnosed with RSV, HRV/HEV, and HAdV were subjected to the sequencing and molecular typing. Mycoplasma serology and bacterial culture were performed on blood samples. At the end of the hospitalization, the children’s hospital chart was reviewed to collect demographic, clinical, laboratory and radiological investigation data using standardized protocol. The association of demographic, clinical features, hematologic factors, radiographic findings, hospital
course and severity of disease with infections due to different viruses was studied. Aetiologic agents including virus and/or bacteria were detected in 158 (95.8%) of the patients. Single virus was detected in 114 (67.9%) patients; 46 (27.9%) were co-infected with different viruses including double-virus infections in 37 (22.4%) and triple-virus infections in 9 (5.5%) cases. Approximately 70% of samples were found positive using conventional methods as compared with 96% using molecular methods.

A wide range of respiratory viruses was detected in the study. RSV (50.3%), with predominance of group B (GB3 genotype), played a major role among hospitalized children. The results of this survey also showed significant burden of HRV infections (32.7%). Phylogenetic study of the VP4/VP2 region confirmed the broad genetic diversity of circulating HRV. HRV-A strains represented the majority of the detections, 22/36 (61%). Recently discovered HRV-C group was substantially implicated as etiological agent among studied patients, 14/36 (39%). Other etiological agents including HAdV (serotypes 1, 2, 3, and 6), HMPV, IFV-A, PIV 1-3, HBoV, HCoV-OC43 and HEV (B, C, and D species) were detected in 14.5, 9.6, 9.1, 4.8, 3.6, 2.4 and 1.8 percent of the samples, respectively. Ninety percent of the cases occurred in children less than 2 years. The majority of RSV infections occurred in children less than six months as compared with other virus groups. However, HRV was mainly detected in the second half of the infancy. The most common clinical presentations of ALRTI, among hospitalized children infected with the studied viruses were cough (96%), fever (85%), rhinorrhea (83%), difficulty in breathing (84%), tachypnea, chest wall crepitations (93%) and recession (80%). Children were admitted after a mean duration of three days. However, it was significantly earlier for HRV (1.9 days) than RSV (4.0
Fever was a prominent feature of RSV and IFV infections. In this study, HRV-C infected children were more likely to have wheezing/rhonchi as compared with HRV-A. The results of the investigation also showed that antibiotics were administered in majority of the patients 136/165, (82%). HRV-infected patients were less likely to receive antibiotics compared with RSV patients. The results of the study suggested that respiratory viral agents significantly contributed to the aetiology of ALRTIs among hospitalized children. Our results demonstrated the potential usefulness of molecular detection methods compared with conventional methods for the diagnosis of ARTIs among hospitalized children. In this study, newly discovered viruses including HMPV, HBoV and HRV-C were reported for the first time in Malaysia. Our study also highlighted that the epidemiology and clinical features were specified to certain viral agents studied.
Abstrak tesis yang telah dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan ijazah Master Sains

PENGESANAN VIRUS-VIRUS DALAM ASPIRAT NASOFARIKS KANAK-KANAK DENGAN JANGKITAN PERNAFASAN BAHAGIAN BAWAH YANG DIMASUKKAN KE DALAM HOSPITAL SERDANG, SELANGOR, MALAYSIA

Oleh

MOHAMMADREZA ETEMADI

Julai 2011

Pengurusi: Profesor Norlijah Othman, MBBS, MRCP

Fakulti: Perubatan dan Sains Kesihatan

Jangkitan pernafasan bahagian bawah akut (ARLTIs) merupakan penyebab utama kematian di kalangan bayi dan kanak-kanak di seluruh dunia, kebanyakannya berlaku di negara membangun termasuk Asia Tenggara dan Afrika. Peranan virus sebagai agen penyebab ARLTIs di kalangan kanak-kanak semakin jelas dengan menggunakan kaedah pengesanan molekular yang sensitif. Tujuan kajian adalah untuk menilai epidemiologi jangkitan virus sistem pernafasan di kalangan kanak-kanak kurang daripada lima tahun yang dimasukkan ke Hospital Serdang disebabkan ARLTIs menggunakan kaedah pengesanan konvensional dan molekular serta
faktor hematologi, penemuan radiografi, laporan hospital, dan keterukuran jangkitan disebabkan oleh kajian pelbagai virus telah dinilai menggunakan kaedah statistik. Agen aetiologi termasuk virus dan/atau bakteria dikesan pada 158 (95.8%) pesakit. Virus tunggal telah dikesan pada 114 (67.9%) pesakit; 46 (27.9%) pesakit telah dijangkiti oleh beberapa virus yang berlainan termasuk jangkitan dua-virus pada 37 (22.4%) pesakit dan jangkitan tiga-virus di dalam 9 (5.5%) kes. Dianggarkan 70% sampel telah dikesan positif menggunakan kaedah konvensional berbanding 96% menggunakan kaedah molekular. Virus sistem pernafasan yang meluas telah dikesan di dalam kajian ini. RSV (50.35%) dengan predominan kumpulan B (genotip GB3), memainkan peranan utama di kalangan kanak-kanak yang dimasukkan ke dalam hospital. Keputusan tinjauan ini juga menunjukkan bebanan yang signifikan oleh jangkitan HRV (32.7%). Kajian filogenetik kawasan VP4/VP2 telah mengesahkan diversiti genetik edaran HRV yang luas. Strain HRV-A mewakili majoriti pengesanan 22/36 (61%). Baru-baru ini penemuan kumpulan HRV-C telah dibabitkan sebagai agen etiologi di kalangan pesakit-pesakit yang di kaji 14/36 (39%). Agen etiologi lain termasuk HAdV (serotip 1,2,3, dan 6), HMPV, IFV-A, PIV 1-3, HBoV, HCoV-OC43 dan HEV (spesis B, C, dan D) telah dikesan masing-masing di dalam 14.5, 9.6, 9.1, 4.8, 3.6, 2.4 and 1.8 peratus sampel. Sembilan puluh peratus kes berlaku pada kanak-kanak kurang daripada dua tahun. Majoriti jangkitan RSV terdiri daripada kanak-kanak kurang dari enam bulan berbanding kumpulan virus lain. Walau bagaimanapun, HRV terutamanya dikesan pada separuh masa kedua kehamilan. Kebiasaannya, laporan klinikal ALRTIs di kalangan kanak-kanak hospital yang dijangkiti dengan virus yang dikaji merupakan batuk (96%), demam (85%), rhinorrhea (83%), kesukaran bernafas (84%), tachypnea, kreptitasi
dinding dada (93%), dan retraksi (80%). Kanak-kanak telah dimasukkan ke hospital pada purata masa 3 hari. Walau bagaimanapun, ia signifikan lebih awal bagi jangkitan HRV (1.9 hari) berbanding RSV (4.0 hari). Demam merupakan ciri-ciri utama oleh jangkitan RSV dan IFV. Dalam kajian ini, kanak-kanak yang dijangkiti oleh HRV-C lebih cenderung menghadapi wheezing/ronki berbanding HRV-A. Keputusan kajian menunjukkan bahawa antibiotik yang dimasukkan ke dalam majoriti pesakit-pesakit 136/165, (82%). Pesakit-pesakit yang dijangkiti HRV kurang memerlukan antibiotic berbanding dengan pesakit RSV. Ini merupakan kajian pertama ke atas epidemiologi dan etiologi oleh panel virus sistem pernafasan di Malaysia yang lengkap. Keputusan menunjukkan agen virus sistem pernafasan menyumbang secara signifikan atiologi ALRTIs di kalangan kanak-kanak yang dimasukkan ke hospital. Keputusan kami menunjukkan potensi penggunaan kaedah pengesanan molekular berbanding kaedah konvensional untuk mendiagnos ALRTIs di kalangan kanak-kanak yang dimasukkan ke hospital. Dalam kajian ini, penemuan baru virus-virus termasuk HMPV, HBoV dan HRV-C telah dilaporkan pertama kali di Malaysia.
ACKNOWLEDGEMENTS

I am heartily offered my regards and blessings to all my supervisory members, whose encouragement, guidance and support from the initial to the final level enabled me to develop an understanding of the subject.

I am grateful to the members of the Department of Medical Microbiology and Parasitology, Department of Pediatrics, Department of Community Health and Department of Imaging, Faculty of Medicine and Health Sciences, University Putra Malaysia for their companionship. I would like to express special thanks to all my labmates and members of the Clinical and Molecular Virology Laboratory and Medical Bacteriology Laboratory for their kind support during the study.

The author would like to acknowledge the Department of Pediatrics, Hospital Serdang, the head of the Department, all the doctors and nurses for their close co-operation to recruit the patients and provide the nasopharyngeal aspirates for the study.
I certify that an Examination Committee has met on 4 July 2011 to conduct the final examination of Mohammadreza Etemadi on his thesis entitled “Detection of Viruses in Nasopharyngeal Aspirates of Children Admitted with Lower Respiratory Tract Infections to Hospital Serdang, Malaysia” in accordance with Universities and University College Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the Master of Science.

Members of the Examination Committee were as follows:

Chong Pei Pei, Ph.D
Associate Professor
Faculty of Medicine and Health Sciences
University Putra Malaysia
(Chairman)

Farida Fatema @ Faida Jamal, MBBS, MSc. FRCPath
Professor
Faculty of Medicine and Health Sciences
University Putra Malaysia
(Internal Examiner)

Zaiton Ahmad, MD, MMed
Lecturer
Faculty of Medicine and Health Sciences
University Putra Malaysia
(Internal Examiner)

Che Illina Che Ishak, MD, Ph.D
Professor
Faculty of Medicine
University Kebangsaan Malaysia
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 23 August 2011
This thesis was submitted to the Senate of University Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Norlijah Othman, MBBS, MRCP
Professor
Faculty of Medicine and Health Sciences
University Putra Malaysia
(Chairman)

Zamberi Bin Sekawi, MD, MPath
Associate Professor
Faculty of Medicine and Health Sciences
University Putra Malaysia
(Member)

Lye Munn Sann, MBBS, DrPH
Professor Dato’
Faculty of Medicine and Health Sciences
University Putra Malaysia
(Member)

Mohd Zaini Abd Hamid, MD, MMed
Lecturer
Faculty of Medicine and Health Sciences
University Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 15 September 2011

xiii
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at University Putra Malaysia or at any other institution.

MOHAMMADREZA ETEMADI

Date: 4 July 2011
TABLE OF CONTENTS

ABSTRACT iii
ABSTRAK vii
ACKNOWLEDGMENTS xi
APPROVAL xii
DECLARATION xiv
LIST OF TABLES xix
LIST OF FIGURES xxi
LIST OF ABBREVIATIONS xxiii

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW 9

2.1 Respiratory Syncytial Virus (RSV) 10
 2.1.1 Virus Properties 10
 2.1.2 Epidemiology 11
 2.1.3 Age Distribution and Seasonality 12
 2.1.4 Clinical Features 13
 2.1.5 Complications 14
 2.1.6 Risk Factors 14
 2.1.7 Laboratory Diagnosis 15

2.2 Human Metapneumovirus (HMPV) 17
 2.2.1 Virus Organization 17
 2.2.2 Epidemiology 18
 2.2.3 Age Distribution and Seasonality 18
 2.2.4 Clinical Features 20
 2.2.5 Complications 20
 2.2.6 Risk Factors 21
 2.2.7 Laboratory Diagnosis 22

2.3 Parainfluenza Viruses (PIVs) 23
 2.3.1 Virus Organization 23
 2.3.2 Epidemiology 23
 2.3.3 Clinical Features 25
 2.3.4 Laboratory Diagnosis 26

2.4 Human Rhinoviruses (HRV) 27
 2.4.1 Virus Organization 27
 2.4.2 Antigenic and Genetic Diversity 27
 2.4.3 Epidemiology 28
 2.4.4 Age Distribution and Seasonality 29
3 MATERIALS AND METHODS

3.1 Study Design and Location 48
3.2 Participant Recruitment 48
3.3 Inclusion Criteria 49
3.4 Exclusion Criteria 50
3.5 Definition of Final Diagnosis 50
3.6 Data Collection 51
3.6.1 Demographic and Clinical Data 51
3.6.2 Laboratory Data 52
3.7 Warnings and Precautions 53
3.8 Collection and Transportation of Nasopharyngeal Aspirates (NPA) 54
3.9 Processing of NPA 54
3.10 Immunological Assays 55
3.10.1 Direct Immunofluorescence Assay (DFA) 55
3.10.2 Shell Vial Culture (SVC) 58
3.11 Conventional Cell Culture 60
3.11.1 Cell Lines 60
3.11.2 Virus Culture 61
3.12 Molecular Diagnostic Methods 62
3.12.1 Validation of PCR Assay 63
3.12.1 Genome Extraction from NPA 66
4 RESULTS

4.1 Study Population 79
4.2 Detection of Viruses using Conventional Methods 83
 4.2.1 Direct Immunofluorescence Assay (DFA) 83
 4.2.1 Shell Vial Culture (SVC) 86
 4.2.2 Conventional Cell culture for RSV 88
 4.2.3 Conventional Cell Culture for HAdV 90
 4.2.4 Conventional Cell Culture for HRV 92
4.3 Detection of Viruses using Molecular Methods 95
 4.3.1 Optimization of Multiplex PCR Assay 95
 4.3.2 Detection of Viruses by Multiplex PCR assay 98
 4.3.3 Detection of Human Rhinoviruses 100
 4.3.4 RSV Sub grouping into A and B 102
 4.3.5 Detection of Human Bocavirus 104
 4.3.6 Detection of Human Adenovirus 106
4.4 Conventional Methods versus Molecular Methods 109
 4.4.1 Phylogenetic Analysis of RSV Isolates 112
 4.4.1 Phylogenetic Analysis of HRV Isolates 119
4.5 Occurrence of Respiratory infections by Viral Aetiology 124
 4.5.1 Viral Infections 124
 4.5.2 Non-viral Infections 125
4.6 Multiple Viral Infections 129
4.7 Monthly Distribution of Viral Infections 131
4.8 Demographic Features 133
 4.8.1 Demographic Features of RSV, HRV, IFV and HMPV Infections 133
 4.8.2 Demographic Characteristics of HAdV, HBoV and HBoV Infections 137
 4.8.3 Demographic Characteristics of HRV-A and HRV-C Infections 138
4.9 Clinical Features 141
 4.9.1 Clinical Features of RSV, HRV, IFV-A and HMPV 141
 4.9.1 Clinical Features of HAdV, PIVs and HBoV 146
 4.9.1 Clinical Features of Single vs. Multiple Viruses 148
 4.9.1 Clinical Features of HRV-A vs. HRV-C Viruses 150
4.10 Laboratory and Chest X-Ray Findings
4.10.1 Laboratory and CXR Findings of RSV, HRV, IFV-A and HMPV Infections 152
4.10.2 Laboratory and CXR Findings of HAdV, PIVs, HBoV Infections 158
4.10.3 Laboratory and CXR Findings of Total Single and Multiple Viral Infections 160
4.10.4 Laboratory and CXR Findings of HRV-A and HRV-C Infections 162
4.11 Hospital Course
4.11.1 Hospital Course of RSV, HRV, IFV-A, & HMPV Infections 165
4.11.2 Hospital Course of HAdV, PIVs & HBoV Infections 170
4.11.3 Hospital Course of Single and Multiple Viral Infections 172
4.11.4 Hospital Course of HRV-A and HRV-C Infections 174

5 DISCUSSION
5.1 Comparison of the methods 177
5.2 Phylogenetic Study 183
5.3 Prevalence of the respiratory agents 186
5.4 Multiple Viral Infections 193
5.5 Demographic Features 195
5.6 Clinical Features 198
5.7 Laboratory and X-Ray Findings 202
5.8 Hospital Course 205

6 CONCLUSION, LIMITATIONS AND RECOMMENDATIONS
6.1 Conclusion 209
6.2 Limitations and Shortcomings 213
6.3 Recommendations for Future Studies 214

REFERENCES/BIBLIOGRAPHY 217
APPENDICES
Appendix A 242
Appendix B 244
Appendix C 249
BIODATA OF STUDENT 251