UNIVERSITI PUTRA MALAYSIA

PROFILING OF VIRULENCE FACTORS AND ANTIBIOTIC RESISTANCE GENES AMONG PHYLOGENETIC GROUPS OF EXTENDED-SPECTRUM-BETA-LACTAMASE PRODUCING *Escherichia coli*

KHADEGA YAHYA ABDULLAH AL-HETAR

FPSK(m) 2011 41
PROFILING OF VIRULENCE FACTORS AND ANTIBIOTIC RESISTANCE GENES AMONG PHYLOGENETIC GROUPS OF EXTENDED-SPECTRUM-BETA-LACTAMASE PRODUCING *Escherichia coli*

By

KHADEGA YAHYA ABDULLAH AL-HETAR

Thesis Submitted to the School of Graduate Studies, University Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science
DEDICATED

To

My Mother,
Father
Brothers and Sisters
Abstract of thesis presented to the senate of University Putra Malaysia in fulfilment of the requirements of the degree of Master of Science

PROFILING OF VIRULENCE FACTORS AND ANTIBIOTIC RESISTANCE GENES AMONG PHYLOGENETIC GROUPS OF EXTENDED-SPECTRUM-BETA-LACTAMASE PRODUCING ESCHERICHIA COLI

By

KHADEGA YAHYA ABDULLAH AL-HETAR

May 2011

Chairman: Assoc. Prof. Zamberi Sekawi, PhD

Faculty: Medicine and Health Sciences

Extra-intestinal infection caused by Escherichia coli arose in recent years throughout the world. Dissemination of antibiotic resistant strains especially resistant to beta-lactams make the E. coli infections difficult to be treated. Presence of commensal E. coli that are resistant to beta-lactams among extraintestinal infections plays an important role in disseminating antibiotic resistance among different microorganisms.

Phylogenetically E. coli are classified into four main phylogenetic groups A, B1, B2 and D by the presence of chuA, yjaA and TsPE4C2 genes. The virulent extra-intestinal strains mainly belong to group B2, and to a lesser extent to group D and harbor many types of virulence genes, whereas most commensal strains belong to group A and B1 with low virulence genes. The ESBLs are known to be produced more in low virulent strains than in high virulent strains. It is
important to determine the factors that make commensal *E. coli* resistant to drug and also cause infections. Therefore the goal of the current study is to investigate the association between antibiotic resistance and virulence factors among different phylogenetic groups which play a vital role in the management of infections.

In the current study 95 clinical isolates of Extended spectrum beta-lactamase (ESBL)-*E. coli* collected from various infections from Selayang Hospital in Malaysia were investigated. The isolates were phylogenetically classified, followed by ESBL typing and important virulent determinants such as adhesions and toxins determination. Among the 95 isolates 42 (44%), 26 (27%), 14 (14.7%) and 13 (13.7%) belonged to groups D, A, B2 and B1. Based on the antibiotic susceptibility test most isolates showed resistance to antibiotics as following; cefotaxime (n=78; 82.11%), ampicillin/sulbactam (78; 82.11%), sulfamethaxazole/trimethoprim (77; 81.1%), azetronem (70; 73.7%), cefepime (53; 55.79%), and ampicillin (n=95; 100%).

Investigation on the genes coding for the beta-lactamase enzymes among the *E. coli* isolates showed that majority (58.9%) belonged to the *CTX-M-1*-type with *CTX-M-15* as the predominant sub type. *CTX-M-9* cluster was significantly higher among pathogenic group than commensal group (*P*<0.05), while *CTX-M-1* cluster was found more among commensal (61.5%) than pathogenic (57.7%) group. However, no significant association between the groups was observed (*P*>0.05). *TEM* was detected in 8 (8.4%) isolates while *SHV* was rare; twelve (12.6%) isolates did not carry any resistance genes.
Among the six virulence genes (iutA, hlyA, sfa/foc, afa/dra, kpsMII and pap) investigated in the ESBL-\textit{E. coli} isolates, \textit{iutA} was found to be more prevalent (n=56, 59\%) followed by \textit{kpsMII} (n=33, 34.7\%). Genes coding for \textit{afa/foc} was not detected in any isolate while \textit{sfa/foc} and \textit{hlyA} were rarely seen. Among the total isolates (n=95) tested 27 (28\%) did not carry any of virulence factors. Analyzing the association between pathogenic and commensal groups for \textit{iutA} did not show any significant association for pathogenic and commensal (P>0.05) while the \textit{kpsMII} was highly significant (P<0.05) for pathogenic group.

In conclusion isolates of \textit{CTX-M} types producing virulent \textit{E. coli} strains among commensal groups isolated from extra-intestinal infections warrants the urgent need for the control of such pathogen as it not only increases the infection rate but also has the potential to spread antibiotic resistance and virulence to other nosocomial pathogens.
PEMPROFILAN FAKTOR VIRULEN DENGAN GEN RINTANG ANTIBIOTIK DI KALANGAN KUMPULAN PHYLOGENETIK ESCHERICHIA COLI YANG MENGHASILKAN BETA-LAKTAMASE-SPEKTRUM-TERPERLUAS

Oleh

KHADEGA YAHYA ABDULLAH AL-HETAR

May 2011

Pengerusi: Prof. Madya Zamberi Sekawi, PhD

Fakulti: Perubatan dan Sains Kesihatan

E. coli yang menyebabkan jangkitan luar usus timbul beberapa tahun kebelakangan ini di seluruh dunia. Penyebaran strain rintang antibiotik terutamanya rintang terhadap beta-laktam menjadikan jangkitan E. coli susah untuk dirawat. Kehadiran E. coli komensal yang rintang terhadap beta-laktam dalam jangkitan luar usus memainkan peranan penting dalam menyebarkan rintangan terhadap antibiotik di kalangan mikroorganisma berlainan.

antara rintangan terhadap antibiotik dengan factor-faktor virulen di kalangan kumpulan phylogenetik berlainan yang memainkan peranan penting dalam pengurusan jangkitan.

Dalam penyelidikan ini, 95 isolat klinikal E. coli-ESBL yang diambil daripada pelbagai jangkitan dari Hospital Selayang telah dikaji. Isolat-isolat ini telah dikelaskan secara phylogenetik, dan jenis ESBL serta penentu virulen penting yang merangkumi pelekatan dan toksin telah ditentukan. Daripada 95 isolat itu, 42 (44%), 26 (27%), 14 (14.7%) dan 13 (13.7%) adalah daripada kumpulan D, A, B2 dan B1 masing-masing. Berdasarkan ujian rentan antibiotik, kebanyakana daripada isolat menunjukkan rintangan terhadap antibiotik-antibiotik berikut: cefotaxime 78 isolat (82.11%), ampicillin/sulbactam 78 isolat (82.11%), sulfamethaxazole/trimethoprim 77 isolat (81.1%), azetronem 70 isolat (73.7%), cefepem 53 isolat (55.79%), dan ampicillin 95 isolat (100%).

Siasatan ke atas gen-gen yang mengkod untuk enzim beta-laktamase di kalangan isolat E. coli menunjukkan kebanyakana daripadanya (58.9%) adalah daripada CTX-M-1 dengan CTX-M-15 sebagai prajenis yang dominan. Gugusan CTX-M-9 menunjukkan kehadiran yang ketara di kalangan kumpulan patogenik berbanding dengan kumpulan komensal (P=0.005), sementara gugusan CTX-M-1 lebih ditemui di kalangan komensal (61.5%) daripada kumpulan patogenik (57.7%). Walau bagaimanapun, tiada perbezaan ketara diperhatikan di antara kedua-dua kumpulan (P>0.05). TEM telah dikesan dalam 8 (8.4%) isolat sementara SHV jarang ditemui dan 12 (12.6%) isolat tidak mempunyai apa-apa gen rintang.

Daripada enam gen-gen virulen (iutA, hlyA, sfa/foc, afa/dra, kpsMII dan pap) yang dikaji daripada isolat-isolat E. coli-ESBL, iutA lebih kerap ditemui (n=56, 59%) diikuti dengan kpsMII
(n=33, 34.7%). Gen-gen yang mengkod untuk \textit{afa/foc} tidak ditemui dalam mana-mana isolat sementara \textit{sfa/foc} dan \textit{hlyA} jarang ditemui. Daripada kesemua isolate-isolat (95) yang dikaji, 27 (28%) tidak membawa apa-apa factor virulen. Analisa perbezaan di antara kumpulan-kumpulan patogenik dan komensal bagi \textit{iutA} tidak menunjukkan hubungkait ketara (P>0.05) sementara \textit{kpsMII} pula adalah amat ketara (P<0.05).

Secara kesimpulannya, isolat-isolat daripada jenis \textit{CTX-M} yang menghasilkan strain virulen \textit{E. coli} dari kalangan kumpulan komensal yang didapati daripada jangkitan-jangkitan luar usus menimbulkan keperluan segera dalam mengawal patogen-patogen sebegini kerana ianya mendatangkan potensi untuk menyebarkan rintangan antibiotik dan sifat virulen kepada patogen-patogen dari persekitaran hospital.
ACKNOWLEDGEMENTS

First I extend my sincere thanks and gratitude to the University for the opportunity and helping me to perform this thesis. I am grateful to my supervisor Dr. Zamberi Bin Sekawi for his valued suggestions and encouragement.

I would like to express my deepest thanks to Assoc. Prof. Dr. Mariana Nor Shamsudin for her unavailable advices and discussion.

I would like to express my thanks and admiration to Dr. Vasantha Kumari Neela for her advices, comments, and support. I am grateful to her for her patience during the research work and writing of thesis.

I am grateful to the members of the Department of Medical Microbiology and Parasitology, University Putra Malaysia for their comradeship. I thank to my fellow friends and members of the medical Microbiology Laboratory for their support throughout my study.

Special thanks and my appreciation to my brother, Mohammed and his wife.
This thesis was submitted to Senate of Universiti Putra Malaysia and has been accepted as fulfilment of requirement for degree of Master of Science. The members of the Supervisory Committee were as follows:

Zamberi Bin Sekawi, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Mariana Nor Shamsudin, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

VasanthaKumari Neela, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI ,PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

KHADEGA YAHYA ABDULLAH AL-HETAR

Date: 25 May 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
</tbody>
</table>

2 LITERATURE REVIEW

- **2.1 E. coli**
- **2.2 Genetic structure**
- **2.3 Antigenic structure**
- **2.4 Classification of E. coli**
 - 2.4.1 Commensal E. coli
 - 2.4.2 Intestinal pathogenic E. coli
 - 2.4.3 Extra-intestinal pathogenic E. coli
- **2.5 Types of extra-intestinal infections**
 - 2.5.1 Urinary tract infections (UTI)
 - 2.5.2 Meningitis
 - 2.5.2 Bacteremia
- **2.6 Phylogenetic groups of E. coli**
- **2.7 Classification of E. coli based on phylogenetic groups**
- **2.8 Antibiotic resistance in E. coli**
 - 2.8.1 TEM-type β-lactamase
 - 2.8.2 SHV-type β-lactamase
 - 2.8.3 CTX-M-type β-lactamases
 - 2.8.4 Epidemiology of CTX-M types around the world
2.9 Virulence factors
 2.9.1 Adhesion factors
 2.9.2 KpsMII
 2.9.3 Toxins and others
2.10 The relationship between phylogenetic groups, virulence factors and antibiotic resistance.

3 MATERIALS AND METHODS
 3.1 Bacterial source
 3.2 Phenotypic confirmation of the isolates as E. coli and ESBL producers
 3.2.1 Gram staining
 3.2.2 Lactose fermentation
 3.2.3 Eosin methylene blue (EMB) agar
 3.2.4 Hemolysis test on blood agar
 3.2.5 Screening for ESBL production
 3.3 Confirmations of the isolates as ESBL producers
 3.4 Molecular characterization of ESBL-E. coli isolates
 3.4.1 Determination of the phylogenetic groups of ESBL producing E. coli
 i) DNA extraction
 ii) Amplification of chuA, yjaA and TspE4.C2 genes by polymerase chain reaction (PCR) technique
 iii) Agarose Gel Electrophoresis of DNA
 iv) Phylogenetic grouping
 3.4.2 Determination of beta lactamase genes pattern among pathogenic and commensal E. coli
 3.4.3 Determination of virulence factors among pathogenic and commensal E. coli
 3.5 Statistical analyses

4 RESULTS
 4.1 Characterization of clinical ExPEC isolates
 4.2 Phenotypic confirmation of the isolates as E. coli and ESBL producers.
 4.3 Confirmation of the isolates as ESBL producers
 4.4 Molecular characterization of ESBL-E. coli isolates
 4.4.1 Determination of phylogenetic groups of ESBL producing E. coli strains
 i) Phylogenetic groups and clinical samples distribution
 ii) Phylogenetic groups and antibiotic resistance
 4.4.2 Determination of pattern of beta lactamase genes among pathogenic and commensal E. coli
 4.4.4 Determination virulence factors among pathogenic and commensal E. coli
 4.5 Statistical analysis results