UNIVERSITI PUTRA MALAYSIA

NUTRITIONAL COMPOSITION AND HYPOCHOLESTEROLEMIC EFFECT OF CANARIUM ODONTOPHYLLUM MIQ. FRUIT IN RABBITS

FARIDAH HANIM BINTI SHAKIRIN

FPSK(m) 2011 38
NUTRITIONAL COMPOSITION AND HYPOCHOLESTEROLEMIC EFFECT OF *CANARIUM ODONTOPHYLLUM* MIQ. FRUIT IN RABBITS

FARIDAH HANIM BINTI SHAKIRIN

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2011
NUTRITIONAL COMPOSITION AND HYPOCHOLESTEROLEMIC EFFECT OF CANARIIUM ODONTOPHYLLUM MIQ. FRUIT IN RABBITS

By

FARIDAH HANIM BINTI SHAKIRIN

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of the requirements for the Master of Science

March 2011
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

NUTRITIONAL COMPOSITION AND HYPOCHOLESTEROLEMIC EFFECT OF CANARIUM ODONTOPHYLLUM MIQ. FRUIT IN RABBITS

By

FARIDAH HANIM BINTI SHAKIRIN

March 2011

Chairman : Azrina binti Azlan, PhD
Faculty : Medicine and Health Sciences

The main objective of this study was to determine nutrient composition, antioxidant properties of Canarium odontophyllum Miq. (CO) fruit and its effect on selected cardiovascular biomarkers in hypercholesterolemic and normocholesterol rabbits. Proximate composition of CO fruit pulps was determined in this study. For powdered full-fat, the fruit was rich in fat, total dietary fiber (TDF) and carbohydrate. For powdered defatted pulp, the fruit was rich in TDF and carbohydrate. CO fruit was also rich in minerals such as potassium, magnesium and calcium. Pulp and kernel oils were rich in palmitic acid and oleic acid. Total phenolic content (TPC) of samples (fruit parts and oil extracts) were determined using spectrophotometer. The TPC of the oils were in the order of; pulp oil (with skin) > pulp oil (without skin) > kernel oil. Meanwhile, the TPC of the different parts of CO was in order of skin (S) > flesh with skin (SF) > flesh (F) > kernel (K). Antioxidant capacities of the different parts of CO (S, SF, F and K) was measured using three different assay; β-carotene bleaching assay, scavenging activity on DPPH and ferric reducing/antioxidant power (FRAP) assay. The antioxidant activities of fruit extracts were in the order of: S > SF
The lipid lowering effect of CO fruit parts was investigated in hypercholesterolemic rabbits (Study I) and normocholesterol rabbits (Study II). The parameter used in these studies are plasma lipid profile [Total cholesterol (TC), low density lipoprotein-cholesterol (LDL-C), high density lipoprotein-cholesterol (HDL-C), plasma malondialdehyde (MDA), antioxidant enzymes [glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT)], total antioxidant status (TAS) and toxicity test [aspartate aminotransferase (AST), alanine aminotransferase (ALT) and gamma-glutamyl transpeptidase (GGT)]. The percentage of lesion of atheroma plaque was determined in this study. In Study I, supplementation of defatted pulp of CO in hypercholesterolemic rabbits showed the greatest lipid lowering effects and increased antioxidant status. The presence of high dietary fiber content and high antioxidant activity in the defatted pulp was the possible factors contributing to the retardation of atherosclerosis and reducing the risk of coronary artery disease (CHD). However, no significant effects of pulp and kernel oils of CO were found in the hypercholesterol study. Thus, the effect of oils of CO was tested in normocholesterol rabbits (Study II). In Study II, supplementation of pulp and kernel oils of CO were found beneficial in reducing the CVD risks. Consumption of pulp oil in rabbits resulted in significant increased of plasma TC and HDL-C levels and lowered plasma LDL-C level. Pulp oil resulted in increased TAS level, erythrocyte GPx and SOD activities, and reduced plasma lipid MDA levels. There were elevation in ALT, AST and GGT activities in pulp oil supplemented group as compared to control. In this study, supplementation of kernel oil of CO was found beneficial in reducing CVD risk factors as it resulted in significant reduction of plasma TC, increased HDL-C, lowered LDL-C and TG. However, the LDL-C to HDL-C ratio was significantly higher in animal fed-kernel oil compared to animal
fed normal diet. No toxic effect was found in relation to consumption of the kernel oil. As conclusion, defatted pulp and oil extracted from CO showed protective effect towards the CVD biomarkers. The protective effects could be due to high phenolic content and high antioxidant activity in the fruits.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan ijazah Master Sains

KOMPOSISI NUTRIEN DAN KESAN HIPOKOLESTEROLEMIK BUAH CANARIIUM ODONTOPHYLLUM MIQ. KE ATAS ARNAB

Oleh

FARIDAH HANIM BINTI SHAKIRIN

Mac 2011

Pengerusi : Azrina Azlan, PhD
Fakulti : Perubatan dan Sains Kesihatan

kuasa penurunan/antioksida ferik (FRAP). Berdasarkan kapasiti antioksida, kulit menunjukkan aktiviti antioksida tertinggi. Aktiviti antioksida ekstrak buah tersebut adalah dalam turutan: S > SF > F > K dalam semua assai antioksida kecuali aktiviti perencatan radikal bebas (DPPH). Kesah hipokolesterolemik bahagian-bahagian buah CO telah dikaji dalam arnab teraruah kolesterol (Studi I) dan normokolesterol (Studi II). Parameter yang digunakan dalam kajian ini adalah lipid profil, lipid peroksida, enzim antioksida, status total antioksida (TAS) dan ujian toksisiti [aspartate aminotransferase (AST), alanine aminotransferase (ALT) and gamma-glutamyl transpeptidase (GGT)]. Peratusan pembentukan ateroma telah ditentukan dalam kajian ini. Dalam Studi 1, pemberian isi buah tanpa lemak telah menunjukkan kesan penurunan lemak paling tinggi dan peningkatan status antioksida. Kehadiran gentian diet dan aktiviti antioksida yang tinggi di dalam isi buah tanpa lemak adalah faktor yang mungkin telah menyumbang kepada perencatan atherosklerotik dan penurunan risiko penyakit koronari arteri (CHD). Walau bagaimanapun, tiada kesan signifikan terhadap pengambilan minyak isi dan biji buah CO dalam studi hiperkolesterol. Oleh itu, kesan pengambilan minyak isi dan biji telah dikaji dalam arnab normalkolesterol dalam studi II. Dalam studi ini, pengambilan minyak isi dan biji buah CO oleh arnab normokolesterol didapati berfaedah untuk mengurangkan risiko CVD (penyakit kardiovaskular). Pengambilan minyak isi menyebabkan peningkatan paras TC dan lipoprotein ketumpatan tinggi-kolesterol (HDL-C) yang signifikan. Penurunan signifikan plasma LDL-C dengan tiada perubahan signifikan nisbah LDL-C kepada HDL-C telah dikesan dalam kumpulan ini. Mnyak ini telah menyebabkan peningkatan TAS secara signifikan, eritrrosit GPx dan SOD dan penurunan plasma MDA. Terdapat peningkatan paras alanina transamina (ALT), aspartat transamina (AST) dan gamma-glutamil trasamina (GGT) dalam kumpulan
minyak isi. Dalam kajian ini, minyak isi telah dikenalpasti sebagai bahan yang bermanfaat dan boleh melindungi daripada penyakit CVD kerana ia telah meningkatkan paras TAS, aktiviti enzim eritrosit GPx dan SOD dan menurunkan paras plasma MDA secara signifikan. Pengambilan minyak biji buah CO dalam arnab normokolesterol telah menyebabkan penurunan signifikan plasma TC, sedikit peningkatan HDL-C dan sedikit penurunan plasma LDL-C dan TG. Nisbah LDL-C kepada HDL-C dalam kumpulan ini telah meningkat secara signifikan berbanding kumpulan kawalan. Tiada kesan toksik ditunjukkan oleh kumpulan NK. Kesalan yang baik yang ditunjukkan oleh bahagian buah CO disebabkan oleh kandungan fenolik dan aktiviti antioksidan yang tinggi dalam bahagian buah tersebut.
ACKNOWLEDGEMENTS

Firstly, I would like to express my deep appreciation to my main supervisor, Dr Azrina binti Azlan for her guidance, patience, support and motivated advice throughout my study. Special thanks dedicated to my co-supervisors Associate Prof Dr Amin bin Ismail and Associate Prof Dr Zulkhairi bin Amom for good motivation, support, advice, comments and suggestion.

I also would like to convey my thankfulness to the lab staff of Department of Nutrition and Dietetics of Faculty of Medicine and Health Sciences, UPM especially, Mr. Syed Hasbullah Syed Kamaruddin and Mr. Eddy Ghadaffie bin Jamiauddin for their help, patience and guidance throughout my research study.

Deepest appreciations to my lovely husband, Muhamad Fahmi bin Hassan for his support, patience and advice. My highest gratitude to my beloved mother, Hjh Norlida binti Ismail, my sincere father, Hj Shakirin bin Omar and my siblings. Thank you to all my friends and lab mates for support, help and guidance throughout my research study.
I certify that a Thesis Examination Committee has met on 8 March 2011 to conduct the final examination of Faridah Hani binti Shakirin on her thesis entitled “Nutritional Composition and Hypocholesterolemic Effect of Canarium odontophyllum Miq. Fruit in Rabbits” in accordance with the Universities and University College Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Zaitun binti Yassin, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Asmah binti Rahmat, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Zuraini binti Hj Ahmad, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Nor Fadilah Rajab, PhD
Associate Professor
Faculty of Medicine and Allied Sciences
Universiti Kebangsaan Malaysia
(External Examiner)

\[Signature\]

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 27 June 2011
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree. The members of the Supervisor Committee are as follows:

Azrina Azlan, PhD
Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Amin Ismail, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Zulkhairi Amom, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledge. I also declared that it has not been previously, and not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

FARIDAH HANIM BINTI SHAKIRIN

Date: 8 March 2011
TABLE OF CONTENTS

ABSTRACT ii
ACKNOWLEDGEMENT viii
APPROVAL ix
DECLARATION xi
LIST OF TABLES xv
LIST OF FIGURES xvii
LIST OF ABBREVIATION xix

CHAPTER
1 INTRODUCTION 1
2 LITERATURE REVIEW 8
 2.1 Canarium odontophyllum Miq. fruit 8
 2.2 Fruits and vegetables as source of antioxidants 10
 2.3 Polyphenols 12
 2.4 Free radical and antioxidant activities 15
 2.4.1 Superoxide dismutase (SOD) 17
 2.4.2 Glutathione peroxidase (GPx) 17
 2.4.3 Catalase 18
 2.5 LDL (Low Density Lipoprotein) oxidation 18
 2.6 Atherosclerosis and its classification 19
 2.7 Lipid or lipoprotein metabolism 23
 2.7.1 Cholesterol 23
 2.7.2 Lipoprotein 24
 2.7.3 Low-density lipoprotein (LDL) 25
 2.7.4 High-density lipoprotein (HDL) 25
 2.7.5 Triglycerides (TG) 26
 2.8 Cholesterol metabolism 27
 2.9 Simvastatin 31
 2.10 Hypercholesterolemia and lipid peroxidation 32
 2.11 Hypercholesterolemia and toxicity 33
 2.11.1 Aspartate aminotransferase 33
 2.11.2 Alanine aminotransferase 33
 2.11.3 Gamma-glutamyl transpeptidase (GGT) 34
 2.12 Dietary fat and hypercholesterolemia 35
 2.13 Dietary fiber and hypercholesterolemia 37

3 NUTRIENT COMPOSITION AND ANTIOXIDANT CAPACITIES 39
 OF C. odontophyllum Miq.
 3.1 Introduction 39
 3.2 Material and methods 40
 3.2.1 Sample 40
 3.2.2 Chemicals 40
 3.2.3 Preparation of samples 41
 3.2.4 Extraction of pulp and kernel oils of CO fruit 43
 3.2.5 Determination of proximate composition and mineral content 43
 3.2.6 Determination of fatty acid composition of CO oils 44
3.2.7 Determination of total phenolic content in pulp and kernel oils 45
3.2.8 Determination of total phenolic content and antioxidant activity of CO fruit parts 46
3.2.9 Statistical analysis 50

3.3 Results and discussion 50
3.3.1 Proximate composition, dietary fiber and mineral content 50
3.3.2 Fatty acid composition 55
3.3.3 Total phenolic content in oils 58
3.3.4 Total phenolic content of different parts of CO fruit 60
3.3.5 The antioxidant capacity of different parts of CO fruit 61
3.3.6 Correlation between total phenolic content and antioxidant capacities 66

3.4 Conclusions 66

4 CHOLESTEROL LOWERING EFFECT OF C. odontophyllum Miq. IN HYPERCHOLESTEROLEMIC RABBITS 68
4.1 Introduction 68
4.2 Materials and methods 69
4.2.1 Fruit and experimental animals 69
4.2.2 Animals diets 69
4.2.3 Chemicals and reagent 69
4.2.4 Preparation of fruit 70
4.2.5 Extraction of oil from pulp and kernel of C. odontophyllum fruit 70
4.2.6 Experimental design 70
4.2.7 Preparation of animal diets 72
4.2.8 Preparation of 0.5% cholesterol diet 74
4.2.9 Food intake and body weight 77
4.2.10 Blood collection 77
4.2.11 Lipid profile analysis 78
4.2.12 Lipid peroxidation 80
4.2.13 Antioxidant status 81
4.2.14 Toxicity profile 84
4.2.15 Atheroma plaque scoring 86
4.3 Statistical analysis 87
4.4 Results 88
4.4.1 Food intake and body weight 88
4.4.2 Lipid profile 91
4.4.3 Malondialdehyde (MDA) level 101
4.4.4 Antioxidant status 103
4.4.5 Toxicity study 111
4.4.6 Assessment of Atherosclerotic plaques 117
4.5 Discussion 122
4.5.1 Food intake and body weight 122
4.5.2 Lipid profile 123
4.5.3 Malondialdehyde (MDA) 128
4.5.4 Antioxidative mechanism 129
4.5.5 Toxicity 133
4.5.6 Atheroma plaque 135
4.5.7 Conclusions 138

5 CHOLESTEROL LOWERING EFFECT OF PULP OIL AND KERNEL OILS EXTRACTED FROM C. odontophyllum Miq. FRUIT IN NORMOCHOLESTEROL RABBITS

5.1 Introduction 140
5.2 Materials and methods 141
 5.2.1 Fruit and experimental animals 141
 5.2.2 Animal diets 141
 5.2.3 Chemicals and reagents 141
 5.2.4 Fruit preparation 141
 5.2.5 Oil extraction from the pulp and kernel of CO 142
 5.2.6 Experimental animals 142
 5.2.7 Preparation of experimental diets 144
 5.2.8 Food intake and body weight 146
 5.2.9 Blood collection 146
5.3 Results 147
 5.3.1 Food intake and body weight 147
 5.3.2 Effect of CO oils on plasma lipid profiles 148
 5.3.3 Effect of CO oils on plasma lipid peroxidation and antioxidative status 152
 5.3.4 Toxicity effect of CO oils 155
5.4 Discussion 157
 5.4.1 Food intake and body weight 157
 5.4.2 Effect of CO oils on plasma lipid profile 158
 5.4.3 Effect of CO oils on plasma lipid peroxidation marker 160
 5.4.4 Effect of CO oils on antioxidant status 162
 5.4.5 Effect of CO oils on liver function tests 164
5.5 Conclusions 165

6 SUMMARY, GENERAL CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH

6.1 Summary 166
6.2 General conclusions 166
6.3 Limitation of study 168
6.4 Recommendation for future research 168

REFERENCES 170
APPENDICES 199
BIODATA OF STUDENT 207
LIST OF PUBLICATIONS 208