ANTIOXIDATIVE POTENTIAL OF FOUR EXTRACTS OF HARUAN, *Channa striatus* (BLOCH) AN INDIGENOUS MALAYSIAN SNAKEHEAD FISH

CHE KU DAHLAN BIN CHE KU DAUD

FPSK(m) 2011 37
ANTIOXIDATIVE POTENTIAL OF FOUR EXTRACTS OF HARUAN,
Channa striatus (BLOCH) AN INDIGENOUS MALAYSIAN
SNAKEHEAD FISH

By

CHE KU DAHLAN BIN CHE KU DAUD

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirements for the Degree of Master of Sciences

April 2011
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

ANTIOXIDATIVE POTENTIAL OF FOUR EXTRACTS OF HARUAN, *Channa striatus* (BLOCH) AN INDIGENOUS MALAYSIAN SNAKEHEAD FISH

By

CHE KU DAHLAN BIN CHE KU DAUD

December 2010

Chair: Professor Abdul Manan Mat Jais, PhD

Faculty: Medicine and Health Sciences.

Channa striatus, Haruan is one of the most popular freshwater fish in Malaysia for many medicinal proposed since the past few decades especially in reducing pain and inflammation as well as wound healing. This study was aimed to investigate the antioxidative potentials of *C. striatus* extracts obtained by different methods of extraction including the proximate, minerals contents and to determine the amino and fatty acids compositions. Four types of extracts have been used namely Haruan Traditional Malay Extract (HTE); upper and lower phase, aqueous extract (1:1, w/v), and chloroform methanol extract. An established commercial *C. striatus* essence was used as a reference extract. Energy dispersive x-ray variable pressure scanning electron microscopy (EDX-VPSEM) and atomic absorption spectrophotometry (AAS) were used to determine and identify the mineral elements in the fresh fillet sample. Amino and fatty acids of extracts were analysed using high performance liquid chromatography (HPLC) and gas chromatography (GC) techniques, respectively. Antioxidant capacity of all samples was assessed using photosensitized chemiluminescence (PCL) method, ferric reducing antioxidant power (FRAP) and β-
carotene–linoleate bleaching (BCL) assays. The proximate analysis revealed that the moisture content, crude protein, ash and crude lipid of Haruan fresh fillet were 75~85%, 20.85%, 0.98~0.99% and 2.49%, respectively. The elemental analysis using EDX-VPSEM showed that the sample contain many important macro minerals including Ca (21.29 ± 8.36) mg/100, K (230.74 ± 22.65) mg/100, Mg (24.05 ± 1.05) mg/100 and Na (69.20 ± 14.44) mg/100, and trace minerals; Zn (7.08 ± 0.44) µg/g, Fe (17.42 ± 1.53) µg/g, Cu (0.79 ± 0.37) µg/g, Cr (0.12 ± 0.11) µg/g and Se (7.27 ± 0.77) µg/g. The extracts contained at least 17 amino acids with the dominantly were glutamic acid, glycine, leusine, aspartic acid, proline, alanine and arginine with values 1.87 – 43.13 mg/g, 21.80 – 80.85 mg/g, 7.85 – 40.19 mg/g, 13.85 – 44.07 mg/g, 9.49 – 45.46 mg/g, 11.32 – 35.25 mg/g and 5.99 – 21.79 mg/g, respectively. The highest percentage of fatty acids present in the extracts was palmitic acid; 3.53 – 26.84% of total lipid. The others major fatty acids were stearic acid, oleic acid and linoleic acid with values 3.25 – 15.90%, 1.40 – 27.68%, 0.51 – 7.82% of total lipid, respectively. HTE also found to have extra 4 bioactive compounds which been labelled with 1, 2, 3 and 4 after direct injection to HPLC method. The antioxidant activity of the extracts based on PCL method was range between 1.14 – 1.86 µmol/mL (ascorbic acid equivalent) and followed the order of HTE Lower phase > chloroform methanol extract > commercial Haruan essence > aqueous extract > HTE Upper phase. The ability to reduce ferric ion based on FRAP assay was not significant amongst C. striatus extracts with value in range 302.48 - 429.81 µM Fe²⁺/g reducing capacity, but significantly different to the standards used. The highest FRAP value was HTE upper phase (429.81 ± 0.88 µM Fe²⁺/g dry weight sample), followed by HTE Lower phase > aqueous extract (1:1 w/v) > commercial Haruan essence > chloroform methanol extract. The antioxidant activity of extracts
based on the BCL method followed the order of HTE Upper phase > commercial Haruan essence > aqueous extract (1:1 w/v) > HTE Lower phase > Chloroform methanol extract. All the samples in PCL and FRAP assays showed no significant difference but have significant difference in BCL assay at p < 0.05. Based on results of the three antioxidant capacity assays, antioxidant capacity all *C. striatus* extracts studied were in the order of HTE Upper phase > HTE Lower phase > aqueous extract (1:1 w/v) > commercial Haruan essence > chloroform methanol extract. Results indicated that different assays revealed different antioxidant capacity. In conclusion, *Channa striatus* Haruan extracts were proven to have high antioxidant activities. Besides, the extracts were shown to have hydrophilic antioxidative properties. Thus the extract may recommend as biopharmaceutical product or as a food supplement which providing natural antioxidant for improving and maintaining body’s health.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KEUPAYAAN ANTIOKSIDATIF DALAM EMPAT EKSTRAK IKAN HARUAN, Channa striatus (BLOCH) LELUHUR MALAYSIA

Oleh

CHE KU DAHLAN BIN CHE KU DAUD

April 2011

Pengerusi: Profesor Abdul Manan Mat Jais, PhD

Fakulti: Perubatan dan Sains Kesihatan

Channa striatus, Haruan adalah salah satu ikan air tawar yang popular di Malaysia untuk pelbagai tujuan perubatan sejak beberapa dekad yang lalu terutamanya dalam mengurangkan kesakitan dan pembengkakan serta penyembuhan luka. Kajian ini bertujuan untuk mengkaji keupayaan antioksidatif ekstrak C. striatus yang disediakan melalui beberapa kaedah pengekstrakan yang berbeza termasuk menentukan komposisi proksimat, kandungan mineral, asid amino dan asid lemak. Empat jenis ekstrak digunakan iaitu ekstrak Haruan Tradisional Melayu (HTE); bahagian atas dan bahagian bawah, ekstrak akues (1:1, w/v) dan ekstrak kloroform methanol. Satu ekstrak pati C. striatus yang komersial terkenal umum telah digunakan sebagai ekstrak rujukan. Teknik penyerakan tenaga x-ray pelbagai tekanan-imbasan mikroskop elektron (EDX-VPSEM) dan kaedah spektrofotometri penyerakan atom (AAS) telah digunakan untuk menentukan dan mengenalpasti unsur-unsur mineral dalam sampel isi segar. Asid amino dan asid lemak dari setiap ekstrak masing-masing dianalisis menggunakan teknik kromatografi ceair prestasi tinggi (HPLC) dan kromatografi gas (GC). Kapasiti antioksidan semua sampel telah
diukur menggunakan kaedah *photosensitized chemiluminescence* (PCL), asai penurunan ferik/kekuatan antioksidan (FRAP) dan asai pelunturan β-karotena–asid linoleik (BCL). Analisis proksimat menunjukkan bahawa kandungan air, protein kasar, abu dan lemak mentah masing-masing adalah 75 ~ 85%, 20.85%, 0.98 ~ 0.99% dan 2.49%. Analisis unsur mineral dengan EDX-VPSEM menunjukkan bahawa sampel mengandungi mineral-mineral penting termasuk makromineral seperti Ca (21.29 ± 8.36) mg/100, K (230.74 ± 22.65) mg/100, Mg (24.05 ± 1.05) mg/100 dan Na (69.20 ± 14.44) mg/100, manakala mineral surih; Zn (7.08 ± 0.44) ug/g, Fe (17.42 ± 1.53) ug/g, Cu (0.79 ± 0.37) ug/g, Cr (0.12 ± 0.11) ug/g dan Se (7.27 ± 0.77) ug/g. Semua ekstrak didapati mengandungi sekurang-kurangnya 17 asid amino dengan asid glutamik, glisin, leusine, asid aspartik, prolin, alanin dan argininin dengan nilai masing-masing 1.87 - 43.13 mg/g, 21.80 – 80.85 mg/g, 7.85 - 40.19 mg/g, 13.85 - 44.07 mg/g, 9.49 – 45.46 mg/g, 11.32 – 35.25 mg/g dan 5.99 – 21.79 mg/g. Asid lemak tertinggi hadir dalam ekstrak adalah asid palmitik; 3.53 – 26.84% daripada jumlah keseluruhan lipid. Asid lemak utama lain termasuklah asid stearik, asid oleik dan asid linoleik dengan nilai masing-masing 3.25 – 15.90%, 1.40 – 27.68%, 0.51 – 7.82% daripada jumlah keseluruhan lipid. HTE juga didapati mengandungi 4 sebatian bioaktif tambahan yang telah dilabel sebagai 1, 2, 3 dan 4 selepas ektrak HTE disuntik terus kepada alatan HPLC. Aktiviti antioksidan ekstrak berasaskan kaedah PCL adalah antara 1.14 – 1.86 µmol/mL (ekuivalen asid askorbik) dan mengikut urutan fasa HTE bahagian bawah > ekstrak kloroform metanol > pati Haruan komersial > ekstrak akues > HTE bahagian atas. Kemampuan untuk mengurangkan ion ferum berdasarkan asai FRAP adalah tidak berbeza secara signifikan pada semua ekstrak *C. striatus* dengan nilai keupayaan penurunan adalah antara 302.48 - 429.81 µM Fe²⁺/g, tetapi berbeza signifikan kepada standard yang
digunakan. Nilai FRAP tertinggi adalah HTE bahagian atas (429.81 ± 0.88 µM Fe²⁺/g berat sample), diikuti oleh fasa HTE bahagian bawah > ekstrak akues (1:1 w/v) > Pati Haruan komersial > ekstrak kloroform metanol. Aktiviti antioksidan setiap ekstrak pada asai BCL adalah mengikuti urutan; HTE bahagian atas > pati Haruan komersial > ekstrak akues (1:1 w/v) > HTE bahagian bawah > ekstrak kloroform metanol. Semua ekstrak dalam asai PCL and FRAP menunjukkan tiada perbezaan signifikan tetapi berbeza secara signifikan pada asai BCL pada p < 0.05. Berdasarkan keputusan tiga asai antioksidan, kapasiti antioksidan untuk semua ektrak C. striatus disusun mengikut urutan berikut; HTE bahagian atas > HTE bahagian bawah > ekstrak akues (1:1 w/v) > pati Haruan komersial > ekstrak kloroform metanol. Keputusan ini menunjukkan bahawa asai yang berbeza memberikan nilai kapasiti antioksidan yang berbeza. Sebagai kesimpulan, ekstrak Channa striatus Haruan telah dibuktikan mempunyai aktiviti antioksidan yang tinggi. Di samping itu, ekstrak-ekstrak tersebut menunjukkan pemilikan antioksidatif hidrofilik. Sehubungan itu, ektrak ini adalah dicadang sebagai produk biofarmaseutikal atau sebagai makanan tambahan yang membekalkan antioksidan semulajadi bagi meningkatkan dan mengekalkan kesihatan badan.
ACKNOWLEDGEMENTS

بسم الله الرحمن الرحيم

ALHAMDULILLAH, All Praises to ALLAH,

First, I would like to thank especially to my respective supervisor, Professor Dr. Abdul Manan Mat Jais for giving me the opportunity to learn from him and helping, guidance, encouragements, supports, advices and patient. I am also thankful to my supervisory committee members, Dr Abdah Md Akim, Associate Professor Dr. Zuraini and Professor Dr. Aishah Adam for their constructive advices, comments and suggestions. Without all of them, I would not be able to finish my project successfully. Above all, thanks you so much for being so generous with ideas.

Special thanks to all staffs of Laboratory of Physiology, Laboratory of Cell Signalling and Multipurpose Laboratory, Dr Amin Ismail, Kak Emy, Encik Syed Hasbullah and Kak Suryati at Laboratory of Nutrition of Faculty of Medicine and Health Sciences, Pn Siti Muskinah Mansor at Institut Biosains (IBS), Kak Lina (GC/GCMS), En Halim (HPLC), Mr Zukhruf at Laboratory of Biochemistry, Faculty of Biotechnology and Food Sciences, Kak Najihah at Laboratory of Chemistry, Faculty of Science, UPM and to all lab mates at Laboratory of Pharmacology, Faculty of Pharmacy, UiTM, Professor Dr. Mustafa Ali Mohd, Faculty of Medicine, UM and Puan Normah Ahamad, Research Officer’s Principle of Laboratory of Chemistry, Malaysian Agriculture Research Development Institute (MARDI), I am truly grateful for the kindness and guidance to them which I was able to complete my project works successfully. I also would like to thank to UPEN
Pahang (BSP©/BTK/006: Tabung Amanah Haruan 6362300-14001) for trusting and supporting grant of this research project.

Not forgetting, I gratefully acknowledge the following peoples for their times, advices and generous contributions for making this piece of work possible, members of Haruan Research Group (HRG) who shared works and ideas with me at whole times of my project periods. To all my collages friends which always gives advices, supports and works of spirit in all times. All above, thanks a zillion for sharing your times with me. Your advices are always in my mind.

Special grateful also to my family, my beloved mom, Puan Lijah@Rohani Binti Ab. Rahman, my dad Encik Che Ku Daud Bin Ku Long, my brothers; Abang Man, Abang Saiful, Abang Asmawi, my sister; Kak Mah and my two younger brothers, Acul and Adik Syawal, to my aunties, my uncles and others related family members who always giving me supports and advices without tireless in all times, given each time have strengthened up my soul, gave me confident to accomplish this study.

Lastly to all my course mates and persons, who did not mention here, thanks for helping and being support to me. May Allah bless all of you always, thanks you.

Jazakallahu khairan jaza’.
I certify that a Thesis Examination Committee has met on 18th April 2011 to conduct the final examination of Che Ku Dahlan bin Che Ku Daud on his thesis entitled “Antioxidative Potential of Four Extracts of Haruan, Channa striatus (Bloch) an Indigenous Malaysian Snakehead Fish” in accordance with the Universities and University Collage Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Sabrina binti Sukardi, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Roslida binti Abd Hamid@Abdul Razak, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Shuhaimi bin Mustafa, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Mohd Khan Ayob, PhD
Associate Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(External Examiner)

NORITAH OMAR, PhD.
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Abdul Manan bin Mat Jais, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Abdah binti Md Akim, PhD
Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Zuraini binti Ahmad, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Aishah binti Adam, PhD
Professor
Faculty of Pharmacy
Universiti Teknologi Mara (UiTM)
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

CHE KU DAHLAN BIN CHE KU DAUD

Date: 18th April 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF ANNOTATIONS</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**

2. **LITERATURE REVIEW**

 2.1 Fish background
 2.1.1 *Channa striatus* (Haruan)
 2.1.2 Haruan, *C. striatus* in traditional medicine
 2.1.3 Studies about Haruan
 2.2 Protein
 2.3 Lipid
 2.4 Minerals
 2.5 Free radicals and reactive oxygen species
 2.5.1 Free radical molecules
 2.5.2 Reactive oxygen species
 2.6 Antioxidants or radical scavengers
 2.6.1 Definition and types of antioxidants
 2.6.2 Sources of antioxidant
 2.6.3 Antioxidant defence system
 2.7 Antioxidant molecules from animals
 2.8 Antioxidants in fish
 2.9 Amines, amino acids and peptides as antioxidant molecules
 2.10 Antioxidant assays
 2.10.1 Photosentitized chemiluminescence (PCL) assay
 2.10.2 Ferric reducing antioxidant power (FRAP) assay
 2.10.3 β-carotene – linoleate bleaching assay
 2.10.4 Energy dispersive x-ray microanalysis variable pressure scanning electron microscopy (EDX-VPSEM)

xiii
3
PROXIMATE AND MINERAL COMPOSITIONS OF
Channa striatus HARUAN, AN INDIGENOUS
MALAYSIAN FRESHWATER FISH

3.1 Introduction
3.2 Materials and methods
3.2.1 Fish preparation
3.2.2 Crude protein
3.2.3 Crude lipid
3.2.4 Ash
3.2.5 Moisture
3.2.6 Energy dispersive x-ray microanalysis variable pressure scanning electron microscopy (EDX-VPSEM) method.
3.2.7 Atomic absorption spectrophotometer (AAS) method
3.3 Results and Discussions
3.3.1 Proximate analysis
3.3.2 Energy dispersive x-ray microanalysis variable pressure scanning electron microscopy (EDX-VPSEM)
3.3.3 Atomic absorption spectrophotometer (AAS)
3.4 Conclusion

4
DETERMINATION OF AMINO AND FATTY ACID COMPOSITIONS OF *Channa striatus*, HARUAN TRADITIONAL EXTRACT (HTE)

4.1 Introduction
4.2 Materials and Methods
4.2.1 Fish preparation
4.2.2 Haruan traditional extracts (HTE) (1:1 w/v)
4.2.3 Haruan aqueous extraction (1:1 w/v)
4.2.4 Haruan chloroform methanol extract
4.2.5 Commercial Haruan extract
4.2.6 Determination of amino acid compositions of Haruan extracts
4.2.7 Determination of fatty acid composition (FAME Analysis) of Haruan extracts
4.2.8 High performance liquid chromatography profiling of macromolecule of HTE (direct injection method)
4.2.9 Statistical analysis
4.3 Results and Discussion
4.3.1 The amino acid and fatty acid composition of Haruan extracts
4.3.2 The HPLC profile of Haruan traditional extract (HTE)
5

EVALUATION OF ANTIOXIDATIVE POTENTIAL OF EXTRACTS FROM Channa striatus, HARUAN A MALAYSIAN INDIGENOUS SNAKEHEAD FISH

5.1 Introduction 92
5.2 Materials and Methods 95
5.2.1 Fish preparation 95
5.2.2 Preparation of the Haruan Extracts 95
5.2.3 Photosensitized chemiluminescence (PCL) assay 96
5.2.4 Ferric reducing antioxidant power (FRAP) assay 100
5.2.5 β-carotene – linoleate bleaching assay 101
5.2.6 Statistical analysis 102
5.3 Results and Discussion 103
5.3.1 Photosensitized chemiluminescence (PCL) assay 110
5.3.2 Ferric reducing antioxidant power (FRAP) assay 113
5.3.3 β-carotene – linoleate bleaching assay 117
5.4 Conclusion 122

6

SUMMARY, GENERAL CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH 123
6.1 Research Summary and General Conclusions 123
6.2 Future Recommendations 125

REFERENCES 126
APPENDICES 148
BIODATA OF STUDENT 163
LIST OF PUBLICATIONS/CONFERENCES 165