DEVELOPMENT OF AN INTERNET–BASED SYSTEM TO MEASURE THERMAL COMFORT IN INDOOR ENVIRONMENTS

By

SIVASANKAR SAMBASIVAM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Partial Fulfilment of the Requirements for the Degree of Master of Science

February 2006
DEDICATION

To my family

Thank you for your continued support and understanding
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in partial fulfilment of
the requirement for the degree of Master of Science

DEVELOPMENT OF AN INTERNET-BASED SYSTEM TO MEASURE THERMAL
COMFORT IN INDOOR ENVIRONMENTS

By

SIVASANKAR SAMBASIVAM

February 2006

Chairman : Associate Professor Ir. Nor Mariah Adam, PhD
Faculty : Engineering

The aim of the research is develop an internet-based system that would act as an advisor to
determine and predict comfort level in indoor environment based on fundamental indoor
parameters, with the goal that development of a system that determines the desirable comfort
level in buildings that will enable the saving of energy and ultimately result in saving of costs
for cooling of buildings and yet at the same time provide optimum comfort for the occupants.

Air-conditioning temperatures are often set between 23°C to 25°C based on
American Society of Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE) requirements, but it is not suitable for Malaysians. With this
system, room temperatures can potentially be increased by at least 0.5°C. In
the long term, the system has a potential to reduce energy consumption
without sacrificing Thermal Comfort for occupants.
The technology system used in the development of Thermal Comfort System for Malaysia (TCSM) is based on Active Server Pages (ASP) server technology written in Visual Basic Script (VBScript) using Macromedia Dreamweaver MX as the web-authoring program of choice. Fanger’s equations for predicting Thermal Comfort were converted into specific sets of rules using the backward chaining method. The system is designed to follow three main sections mainly the Start TC Helper, TC Predictor and Thermal Comfort Information. The major input variables required by the system from the user are (1) air temperature of the room, (2) mean radiant temperature of the room, (3) air velocity of the room, (4) relative humidity of the room, (5) clothing thermal resistance of the user and (6) the metabolic rate of the user.

As a means of validation of the system, studies were carried out in the Mid-Valley shopping centre, KBP001 Engineering lab and BKB 107A room from the Faculty of Engineering. As a means of verification, interviews were also carried with various experts in the field of thermal comfort in Malaysia and as a result of the interviews Humphreys’ adaptive thermal comfort equation was added to the internet-based system. With the use of the system, there is a potential savings in energy bills when the system is used to offer the user the comfortable temperature of the room.
Abstrak: Tess ini dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi sebahagian keperluan untuk ijazah Master Sains.

PEMBANGUAN SISTEM BERASASKAN INTERNET UNTUK MERAMAL KESELESAAN TERMA BAGI PERSEKITARAN DALAMAN

Oleh
SIVASANKAR SAMBASIVAM

Februari 2006

Pengerusi: Professor Madya Ir. Nor Mariah Adam, PhD
Fakulti: Kejuruteraan

Objektif kajian ini adalah untuk membangunkan satu sistem berasaskan internet yang berperanan sebagai penasihat untuk menentukan dan meramal tahap keselesaan sesuatu persekitaran dalaman berasaskan parameter dalaman asas. Matlamat projek ini adalah untuk membangunkan satu sistem yang akan menentukan tahap keselesaan yang optimum dalam bangunan yang bakal membolehkan penjimatan tenaga dan memberikan penjimatan kos untuk penyejuk bangunan dan pada masa sama memberikan keselesaan optimum untuk penghuni bangunan.

Suhu penghawa dinding biasanya diletakkan antara 23°C ke 25°C berdasarkan keperluan ASHRAE, yang selalunya adalah terlalu sejuk untuk rakyat Malaysia. Dengan sistem ini, suhu bilik boleh dinaikkan sekurang-kurangnya 0.5°C. Bagi jangka masa panjang, sistem ini mempunyai potensi untuk memberikan penjimatan bil tenaga tanpa pengurangan keselesaan terma bagi penghuni.
Sistem teknologi yang digunakan untuk membangunkan Sistem Internet untuk Keselesaan Terma di Malaysia berdasarkan teknologi ASP yang ditulis dalam bahasa VBScript menggunakan Macromedia Dreamweaver MX. Persamaan yang ditulis oleh Fanger untuk meramal Keselesaan Terma ditukarkan kepada rangkaian kod computer menggunakan kaedah rangkaian belakang. Sistem ini direka untuk mengikuti tiga bahagian utama iaitu Mula Pembantu Keselesaan Terma, Peramal Keselesaan Terma dan Informasi Keselesaan Terma. Data pembolehubah yang diperlukan oleh sistem ini ialah (1) suhu udara bilik, (2) suhu radiasi min bilik, (3) kelajuan udara dan (4) kelembapan bandingan untuk bilik, (5) nilai rintangan terma pakaian dan (6) kadar metabolik penghuni bilik.

Untuk menyalahkan sistem ini beberapa kajian dilakukan di pusat membeli belah Mid-Valley dan di makmal kejuruteraan KBP001. Untuk memeriksa kesahihan system ini, bebrapa temuduga dilakukan dengan pakar dalam bidang keselesaan terma di Malaysia dan hasilnya persamaan keselesaan terma Humpreys ditambahkan kepada sistem ini.
ACKNOWLEDGEMENTS

My thanks and gratitude to a number of people whose help has been of enormous importance in the writing of this thesis:

● To my supervisor, Associate Professor Ir. Dr. Nor Mariah Adam and other members of the supervisory committee: Professor Ir. Dr. Mohamed Daud, Associate Professor Dr. Husaini Omar and Professor Dr. Abdel Magid Hamouda for all of their invaluable expert guidance and assistance in completing and writing of this thesis.

● To all the experts who were interviewed namely Professor Dato Dr. Elias Salleh and Mr. Mohd. Fakri Zaky Jaafar of the Faculty of Architecture UPM; Associate Professor Dr. Samirah Abdul Rahman and Professor Dr. Azni Zain Ahmed of Universiti Institute Technology MARA (UiTM)

● To all my friends from UPM for their moral support.

● To my family members for their encouragement, patience and tolerance.

To all other individuals that have contributed directly or indirectly to the writing of this thesis, I would like to thank them for their contribution.

Sivasankar Sambasivam
I certify that an Examination Committee has met on 28th February 2006 to conduct the final examination of Sivasankar Sambasivam on his Master of Science thesis entitled “Development of an Internet-Based System To Measure Thermal Comfort In Indoor Environments” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

MEGAT MOHAMAD HAMDAN MEGAT AHMAD, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

NAPSIAH ISMAIL, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

TANG SAI HONG, PhD
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

IR. YUSOFF ALI, PhD
Professor
Faculty of Engineering
Universiti Kebangsaan Malaysia
(External Examiner)

HASANAH MOHD GHAZALI, PhD
Professor/ Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

IR. NOR MARIAH ADAM, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

IR. MOHAMED DAUD, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

HUSAINI OMAR, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

ABDEL MAGID HAMOUDA, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/ Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any degree at UPM or any other institutions.

SIVASANKAR SAMBASIVAM

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
</tr>
<tr>
<td>ABSTRACT</td>
</tr>
<tr>
<td>ABSTRAK</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
</tr>
<tr>
<td>APPROVAL</td>
</tr>
<tr>
<td>DECLARATION</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Prologue | 1
1.2 Problem Statement | 1
1.3 Objective of Study | 2
1.4 Scope and Limitations of the Study | 3
1.5 Expected Outcome | 4

2 LITERATURE REVIEW

2.1 Thermal Comfort | 5
2.1.1 Air temperature | 6
2.1.2 Mean Radiant Temperature | 7
2.1.3 Air Velocity | 7
2.1.4 Relative Humidity | 8
2.1.5 Clothing Thermal Resistance | 9
2.1.6 Metabolic Rate | 9
2.1.7 Other Factors | 10
2.1.8 Thermal Comfort Index | 10
2.1.9 Comfort Zone | 14
2.1.10 Thermal Discomfort | 14
2.2 Previous comfort research in South East Asia | 15
2.3 Basic Air Conditioning Systems Design | 16
2.4 Energy efficiency | 22
2.4.1 Heat Transfer | 23
2.4.2 TNB Tariff Rates | 26
2.5 Expert Systems | 27
2.5.1 Why choose an Expert System | 28
2.6 Web Language used | 30
2.6.1 Dynamic Web Sites and How They Work | 30
2.6.2 The Application Server (Middleware) | 30
2.7 Summary | 33
METHODOLOGY

3.1 The Internet based system construction cycle 39
3.2 Functions of the Internet Based System 41
3.3 Internet Based System Prototyping 41
3.4 Internet Based System Architecture 44

3.4.1 System Design and Requirement

3.5 Knowledge Base Handling 48
3.6 Knowledge Representation Techniques 49
3.7 Inference Engine 50

3.8 Production and Rule Representation Techniques

3.8.1 System Advisor 52
3.9 Testing and Evaluation 52
3.10 Verification and Validation 53
3.11 Development Tool 54

3.12 Overview of the Thermal Comfort System for Malaysia Design

3.12.1 Advising Knowledge Base 56
3.12.2 Data Repository 57
3.13 Designing the system user interface 57
3.14 TCSM Output Construction 59

3.15 Case Studies 59

3.15.1 Case Study: Mid-Valley shopping mall

3.15.2 Case Study: Six-Office Study

3.15.3 Case Study: KBP-001 lab at the Engineering Faculty of UPM

3.16 Designing the system user interface 57

3.17 TCSM Output Construction 59

3.18 Case Studies 59

3.18.1 Case Study: Mid-Valley shopping mall, Kuala Lumpur

3.18.2 Case Study: Six-Office Study

3.18.3 Results of study done at the KBP-001 lab at the Engineering Faculty of UPM

RESULTS AND DISCUSSION

4.1 System Implementation 64
4.2 System Flow Chart 66
4.3 Start TC Helper 67

4.3.1 Start TC Helper Interfaces

4.4 TC Predictor 71

4.5 Thermal Comfort Information 73

4.6 Internet-Based System Rules 74

4.6.1 Rules for Prediction or Estimation of Tcl, To, PMV and PPD

4.6.2 Rules for Thermal Comfort Information

4.6.3 Rules for Predicting Comfort

4.6.4 Rules for User Helper

4.7 Case Studies for TCSM 93

4.7.1 Result: Mid-Valley shopping mall, Kuala Lumpur

4.7.2 Case Study: Six-Office Study

4.7.3 Results of study done at the KBP-001 lab at the Engineering Faculty of UPM

4.8 Energy Efficiency 114

4.9 Validation and Verification 117

4.9.1 Observation

4.9.2 Temperature Assessment

4.9.3 Interviews with the experts (Verification of Equations used)

CONCLUSION

5.1 Conclusion 132
5.2 Future Work 135

REFERENCES

137

APPENDICES

148

BIODATA OF THE AUTHOR

160