IDENTIFICATION OF MICRORNA-21 AS A PRO-INVASIVE TARGET IN UROTHELIAL CELL CARCINOMA

TAN KEAI SINN

FPSK(m) 2011 32
IDENTIFICATION OF MICRORNA-21 AS A PRO-INVASIVE TARGET IN UROTHELIAL CELL CARCINOMA

By

TAN KEAI SINN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in the Fulfillment of the Requirement for the Degree of Master of Science

December 2011
Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

IDENTIFICATION OF MICRORNA-21 AS A PRO-INVASIVE TARGET IN UROTHELIAL CELL CARCINOMA

By
TAN KEAI SINN

December 2011

Chair: Abhimanyu Veerakumarasivam, PhD
Faculty: Medicine and Health Sciences

MiRNAs are short non-coding endogenous RNA molecules that play substantial roles in human development and cell lineage decisions. It has been shown to regulate gene expression by controlling messenger RNA (mRNA) translation efficiency. There are emerging evidences suggesting that miRNA plays a critical role in cancer initiation and progression, acting either as tumor suppressors or oncogenes. This study is aimed at identifying mRNA expression patterns associated with the invasiveness of Urothelial Cell Carcinoma (UCC) cell lines and functional targeting of specific miRNAs that potentially regulate these target genes. Microarray-based global gene expression profiling of EJ28 (invasive) and RT112 (non-invasive) cells was performed to identify differentially regulated genes (P<0.01). Loess normalization using non-differentially expressed genes was performed by a rank invariant selection method to normalize the logarithmic expression ratios. Non-parametric Wilcoxon rank-sum test was used to identify top differentially expressed genes. Gene ontology was assigned to the top dysregulated genes using GeneDecks V3 online software (p<0.01) and the comprehensive set of functional annotation
tools of DAVID v6.7. Genes linked to metastasis were identified as amongst the top
dysregulated genes, and they were correlated to miR-21 and other miRNAs based on
in silico prediction. Several genes such as *SERPINB5, TIMP3* and *TPM1* were
predicted to be potentially regulated by miR-21. Several phenotype assays (matrigel
invasion, migration and cell proliferation) were conducted to characterize the
phenotypic effects of miR-21 expression modulation. The relative proliferation rate
at 144 hours of RT112 cells transfected with miR-21 inhibitor decreased dramatically,
at 33.23% and 36.96% as compared to untransfected sample control and mock
transfection control, respectively. Consistently, the relative proliferation rate at 96
hours of EJ28 cells transfected with miR-21 inhibitor decreased by 10.20% and
12.13% as compared to untransfected and mock transfected controls, respectively. In
the cell migration assay, knockdown of miR-21 in RT112 cells showed a 30.44%
decrease in cell migration rate at 27 hours. The migration rate was reduced more
significantly in knockdown EJ28 cells (47.38% at 27 hours). RT112 miR-21
knockdown cells demonstrated an invasion potential decrease of 3.41 and 3.29 fold
as compared to untransfected and mock transfection controls, respectively. As for
EJ28 cells, the invasion potential decreased by 2.53 and 2.33 fold as compared to
untransfected and mock transfection controls, respectively. Silencing of miR-21 in
both non-invasive and invasive bladder cancer cell lines was then demonstrated to
have an effect on cell proliferation, migration and invasion. In conclusion, miR-21 is
a potential key regulator in UCC progression and invasion, making it a likely
biomarker in the future.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGENAL PASTIAN MIKRORNA-21 SEBAGAI SASARAN PRO-INVASIF DALAM KARCINOMA SEL UROTELIIUM

Oleh

TAN KEAI SINN

Disember 2011

Pengerusi: Abhimanyu Veerakum arasivam, PhD

Fakulti: Perubatan dan Sains Kesihatan

MiRNA merupakan molekul RNA endogenus tidak mengekod yang pendek dan memainkan peranan penting dalam perkembangan manusia dan ketentuan susur galur sel. Ia mampu mengawal ekspresi gen dengan mengawal kecekapan translasi RNA pengutus (mRNA). Pelbagai bukti baru telah ditemui membayangkan bahawa miRNA memainkan peranan penting dalam permulaan dan perkembangan kanser, iaitu bertindak sebagai penahan tumor atau onkogen. Kajian ini bertujuan untuk mengenal pasti kaitan di antara corak ekspresi mRNA dengan sifat invasif titisan karsinoma sel urotelium (UCC) dan sasaran berfungsi bagi miRNA khusus yang berpotensi mengawal atur gen sasaran. Pemprofilan ekspresi gen berasaskan mikroatur bagi sel-sel EJ28 (invasif) dan RT112 (tidak invasif) telah dijalankan untuk mengenal pasti gen-gen yang menunjukkan perbezaan dari segi pengawalaturannya (P<0.01). Normalisasi Loess menggunakan gen-gen, yang dikenal pasti melalui kaedah pemilihan pangkat tidak berubah serta tidak mengalami perubahan dari segi ekspresinya, telah dilakukan untuk menormalkan nisbah ekspresi.
pengembangbiakan sel, migrasi dan pencerobohan sel. Kesimpulannya, miR-21 berpotensi sebagai pengawal atur utama dalam perkembangan dan pencerobohan UCC, menjadikannya sebagai bio-penanda yang berpotensi pada masa yang akan datang.
ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my supervisor, Dr Abhimanyu Veerakumarasivam for giving me the precious chance to work on this research project as well as for his support and guidance throughout my graduate studies in UPM. His valuable guidance, constructive comments and endless support throughout the course of this study is very much appreciated.

I would like to express my deepest gratitude to my supervisory committee, Prof Dr Rozita Rosli, Dr Syahrilnizam Abdullah, as well as Associate Prof. Dr Cheah Yoke Kqueen for their direction, assistance and guidance. My heartfelt thanks go to Michael Ling King Hwa, the lab coordinator of the Medical Genetics Laboratory (MGL), UPM for making the laboratory such a great place to work. I also wish to thank Puan Salimah Mohd Sain and Puan Puspaleela for their kindness and assistance. Special thanks to Puan Hazlen Salleh for making the lab an enjoyable place to come to everyday.

Special appreciation to Wendy Yeo, Jiuin Yee, Li Yang and other colleagues who helped me in many ways. I thank Narges for her invaluable help in this study. I thank all my friends, Alice, Low, Eunice, Mun Fun, Radha, Chitra, Kai Leng, Saddiq, Fatim, Aimi, Nadine, Zahra, Wei Hong, Maryam, Suleiman, Hani, Akram, Marlini, Dr Reza and Pak Herson, for all of your moral support and guidance throughout this research project. It is so great to know all of you during my time at MGL, a place where we share fun and knowledge. Finally, words alone cannot express the gratitude I owe my family who has always given me encouragement and assistance.

vii
I certify that a Thesis Examination Committee has met on 14 December 2011 to conduct the final examination of Tan Keai Sinn on her thesis entitled “Identification of Microrna-21 as a Pro-Invasive Target in Urothelial Cell Carcinoma” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Patimah binti Ismail, PhD
Professor
Department of Biomedical Science
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Chairman)

Norshariza binti Nordin, PhD
Department of Obstetrics and Gynecology
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Internal Examiner)

Lai Mei I, PhD
Department of Pathology
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Internal Examiner)

Norfilza Mohd Mokhtar, PhD
Associate Professor
Department of Physiology
Universiti Kebangsaan Malaysia
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the supervisory Committee were as follows:

Abhimanyu Veerakumarasivam, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Rozita Rosli, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Syahril Abdullah, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Cheah Yoke Kqueen, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

TAN KEAI SINN

Date: 14 December 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW 6

2.1 Urinary Bladder Anatomy and Physiology 6

2.1.1 Urinary Bladder Histology 9

2.1.2 Urinary Bladder Cancer 11

2.1.2.1 Overview of Urinary Bladder Cancer 11

2.1.3 Urinary Bladder Cancer Epidemiology 12

2.1.3.1 Incidence and Prevalence 12

2.1.3.2 Age and Gender 13

2.1.3.3 Ethnicity and Race 15

2.1.3.4 Socio-economic Status 15

2.2 Urothelial Carcinoma Tumorigenesis Initiation and Promotion 16

2.3 Manifestation of Urinary Bladder Cancer 19

2.3.1 Signs and Symptoms 19

2.3.2 Diagnostic Evaluation 19

2.4 Urothelial Carcinoma Molecular Pathology 20

2.4.1 Molecular Pathology of Urothelial Carcinoma 20

2.4.2 Genetics of Urothelial Carcinoma 23

2.5 MicroRNAs (miRNA or μRNA) 24

2.5.1 Background of MiRNAs 24

2.5.2 MiRNA Biogenesis 25

2.5.3 MiRNA Mode of Action 30

2.6 MiRNAs and Cancer 33

2.6.1 Roles of MiRNAs in Cancer 34

2.6.2 MiRNAs with Oncogenic Potential 36

2.6.2.1 BIC/MiRNA-155 36
2.6.2.2 The MiRNA-17 Cluster
2.6.2.3 MiRNA-21
2.6.3 MiRNAs with Tumor Suppressor Activity
2.6.3.1 The let-7 Family
2.6.3.2 MiRNA-15a and MiRNA-16-1 Cluster
2.6.4.3 MiRNA-143 and MiRNA-145
2.7 MiRNAs and Urothelial Cell Carcinoma (UCC)

3 METHODOLOGY
3.1 General Outline of the Study
3.2 Cell Culture Studies
3.2.1 Preparation of Reagents
3.2.2 Maintaining of Cell Culture
3.2.3 Preparation of Cell-stocks
3.3 Total RNA Purification and MiRNA-enriched Fraction
3.3.1 Extraction Procedures
3.3.1.1 Total RNA Extraction
3.3.1.2 MiRNA-enriched Fraction
3.3.2 Quality Assessment of Total RNA and miRNA-enriched Fraction
3.3.2.1 Determination of RNA Purity and Concentration
3.3.2.2 Determination of RNA Integrity
3.4 Microarray Gene Expression Profiling
3.4.1 DNase Treatment
3.4.2 aRNA Amplification
3.4.3 aRNA Purification and Concentration
3.4.4 aRNA Dye Labelling
3.4.5 Labelled aRNA Quantification and Quality Assessment
3.4.6 Array Hybridisation and Data Extraction
3.4.7 In silico Bioinformatics Analysis to Identify MiRNA Targets and Pathways
3.5 Reverse transcription
3.6 Quantitative Real-Time PCR (qRT-PCR)
3.6.1 MiScript Primer Assays
3.6.1.1 Reconstitution of Primer
3.7 Transfection
3.7.1 MiRNA Inhibitor
3.7.2 Transfection of RT112 and EJ28 UCC Cells
3.8 Phenotypic Analysis
3.8.1 Cell Proliferation Assay
3.8.2 Migration Assay (Scratch Assay)
3.8.3 Matrigel Invasion Assay

4 RESULTS

4.1 Gene Expression Profiling and In Silico Prediction of MiRNA Targets

4.1.1 Assessment of the Total RNA Quality

4.1.1.1 Nanodrop Spectrophotometric Analysis

4.1.1.2 Agarose Gel Electrophoresis

4.1.2 Analysis of the Microarray Data and In Silico Prediction of MiRNA Targets

4.2 Quantitative Real-Time PCR (qRT-PCR)

4.2.1 Assessment of the MiRNA-enriched Fraction Quality

4.2.1.1 Nanodrop Spectrophotometric Analysis

4.2.1.2 Agarose Gel Electrophoresis

4.2.2 MiRNA Expression Profiles in RT112 and EJ28 UCC Cell Lines

4.2.2.1 Comparative Quantification Analysis

4.2.2.2 The $2^{-\Delta\Delta C_T}$ (Livak) Method

4.2.2.3 Melting Curve Analysis

4.2.3 Transfection with MiRNA-21 Inhibitor

4.3 Phenotypic Assays

4.3.1 Cell Proliferation Assays

4.3.2 Migration Assays

4.3.3 Matrigel Invasion Assays

5 DISCUSSION

5.1 Differential Gene Expression Profiling

5.1.1 Differential gene expression using Microarrays

5.2 MiRNA Expression and Its Putative Target Gene Prediction

5.2.1 MiRNA Expression by Quantitative Real-time PCR

5.2.1.1 Melting Curve Analysis

5.2.2 In silico Prediction of miR-21 and Its Target Gene

5.3 Phenotypic Effects of MiRNA-21 Inhibition

6 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

6.1 Future Recommendation