DETECTION OF β-GLOBIN GENE POLYMORPHISMS USING REAL TIME PCR-HIGH RESOLUTION MELTING METHOD IN SELECTED IRANIAN β-THALASSAEMIA PATIENTS

SEYED JALAL MARASHI

FPSK(m) 2011 16
DETECTION OF \(\beta \)-GLOBIN GENE POLYMORPHISMS USING REAL TIME PCR-HIGH RESOLUTION MELTING METHOD IN SELECTED IRANIAN \(\beta \)-THALASSAEMIA PATIENTS

By

SEYED JALAL MARASHI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

April 2011
DEDICATIONS

I would like to dedicate this thesis to:

My dear parents, who sacrificed their good life because of my progress and giving the hope and energy during working on this thesis.

"We all know that light travels faster than sound. That's why certain people appear bright until you hear them speak." — Albert Einstein
DETECTION OF β-GLOBIN GENE POLYMORPHISM USING REAL TIME PCR-HIGH RESOLUTION MELTING METHOD IN SELECTED IRANIAN β-THALASSAEMIA PATIENTS

By
SEYED JALAL MARASHI

April 2011

Chairman: Prof. Patimah Bt Ismail, PhD
Faculty: Medicine and Health Sciences

β-thalassemia is a common autosomal recessive disorder among the hereditary diseases worldwide. It is caused by the reduced production of functional β-globin which lead to anemia, as a result of point mutations, small deletions or insertions within the β-globin gene which is located as a cluster on the short arm of chromosome 11. More than 200 different mutations of β-globin genes have been identified. β-thalassemia is most prevalent around the Mediterranean. The gene frequency of β-thalassemia in Iran is high and alters significantly from area to area, but around the Caspian Sea and Persian Gulf with more than 10% have the highest rate. Since the Iranian populations are mixture of different ethnic groups and regarding to lack of precise prevalence of common mutations in β-thalassemic patients in Qazvin province of Iran, research project was defined to identify an accurate allele frequency of common mutations in β-thalassemia patients, with Real Time-PCR HRM method.
PCR-based strategies and direct sequencing have been carried out to screen β-thalassemia subjects. In this research the Rotor-Gene™ 6000 real time rotary analyzer was applied to amplify a target sequence of DNA to high copy number with incorporation of fluorescent (EvaGreen™) dye prior to performing a High Resolution Melting (HRM) analysis. Samples were then analyzed in the HRM channel according to their dissociation behavior. In this descriptive-analytical study, β-thalassemia chromosomes of 120 affected patients (120 β-thalassemia major) were evaluated. The most common mutation detected among subjects was nucleotide 1 (G to A conversion) of Intervening Sequence (IVS) region 2. Thus, IVS-II-1 (G-A) (25.4%), is followed, based on frequency, with IVS-I-110(G-A) (15.4%), IVS-I-5(G-C) (13.3%), FSC-8/9(5.8%), FSC-36/37 (4.6%), Codon 30 (2.5%), IVS-I-6(T-C) (2.1%), IVS-I-1(G-A) (0.8%). The three mutations IVS-II-1(G-A), IVS-I-110(G-A) and IVS-I-5(G-C) accounted for about 54.2% of all of the mutations. The most common allele being IVS-II-I (G-A) with a frequency of 25.4%. In the rest of samples (29.2%) these 8 mutations were not detected and were remained unknown after analysis with common primer that needs further investigation which is beyond the objectives of the study. A rare Hb Monroe and codon 8 (-AA) mutations from Qazvin province of Iran were also detected. The results derived from HRM analysis were fully in accordance with sequencing. Real time-PCR was produced enough DNA for fluorescent melting analysis, both amplification and analysis could be performed in the same tube, providing a homogeneous, closed-tube system that requires no processing or separation steps without any contamination. Consequently HRM could be a sensitive, simpler and more cost effective way to characterize samples than conventional methods and HRM method could greatly facilitate screening for these 8 β-thalassemia mutations. But the main limitation of HRM is that the precise mutation cannot be readily identified and it
thus needs to be coupled with sequencing method. We suggest this rapid and accurate method for molecular screening to detect the common \(\beta\)-thalassemia mutations in the Iranian population as well as in other ethnic groups and nationalities in which \(\beta\)-thalassemia alleles are prevalent.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

POLIMORFISMA GEN β-GILOBIN TERHADAP PESAKIT β-THALASSEMIA DARI SEBAHAGIAN WARGANEGARA IRAN DENGAN MENGGUNAKAN “REAL TIME PCR-HIGH RESOLUTION MELTING”

Oleh

SEYED JALAL MARASHI

April 2011

Pengerusi: Prof. Patimah Bt Ismail, PhD
Fakulti: Perubatan dan Sains Kesihatan

β-thalassemia merupakan sejenis penyakit gangguan autosom resesif yang biasa ditemui dalam penyakit keturunan di seluruh dunia. Gangguan ini disebabkan oleh kurang penghasilan gen β-globin yang seterusnya akan menyebabkan penyakit anemia. Penghasilan gen β-globin yang kurang adalah kesan daripada proses mutasi, pemotongan kecil atau penyisipan dalam gen β-globin yang terletak membentuk kluster pada lengan pendek kromosom 11. Lebih daripada 200 jenis mutasi gen β-globin yang berlainan telah ditemui. β-thalassemia merupakan ganguan gen yang paling tinggi berlaku di kawasan Mediteranian. Frekuensi gen β-thalassemia di kalangan penduduk Iran adalah tinggi dan berubah secara signifikan dari tempat ke tempat, namun di kawasan Laut Kaspia dan Teluk Parsi lebih daripada 10% mempunyai kadar β-thalassemia yang tertinggi. Memandangkan populasi di Iran adalah merangkumi pelbagai kumpulan etnik dan kadar mutasi dalam pesakit β-thalassemia di Qazvin, Iran
yang kurang tepat, maka kajian ini dijalankan untuk menentukan dengan tepat frekuensi alel bagi mutasi dalam pesakit β-thalassemia, menggunakan kaedah “Real Time PCR-
High Resolution Melting” (Real Time-PCR HRM). PCR-berdasarkan strategi dan
kaedah rangkaian secara lansung telah dijalankan untuk mengenalpasti subjek bagi β-
thalassemia. Dalam kajian ini, penganalisis “Rotor-Gene™ 6000 real time rotary” telah
digunakan untuk menguatkan jujukan DNA sasaran kepada nombor salinan yang lebih
tinggi dengan penggunaan pewarna pendaflouran (EvaGreen™) sebelum diteruskan
dengan analisis Pencairan Resolusi Tinggi (HRM). Kemudian, sampel telah dianalisis
dalam saluran HRM berdasarkan sifat pengasingannya. Dalam kajian penghuraian-
analitikal ini, kromosom β-thalassemia dari 120 orang pesakit yang terjejas (120 β-
thalassemia major) telah dianalisa. Mutasi yang paling banyak ditemui di kalangan
subjk ialah nukleotida 1 (penukaran G kepada A) dari Rangkaia Pencelahan (IVS)
baahagian 2 yang mana berdasarkan frekuensi, IVS-II-I (G-A) (25.4%), diikuti dengan
IVS-I-110(G-A) (15.4%), IVS-I-5(G-C) (13.3%), FSC-8/9(5.8%), FSC-36/37 (4.6%),
Codon 30 (2.5%), IVS-I-6(T-C) (2.1%) dan IVS-I-1(G-A) (0.8%). Tiga jenis mutasi
iaitu IVS-II-1(G-A), IVS-I-110(G-A) dan IVS-I-5(G-C) merangkumi 54.2% dari
kesemua mutasi. Dalam lebihan sampel (29.2%), 8 mutasi yang telah dikenalpasti tidak
ditemui dan tetap tidak diketahui selepas analisa dijalankan menggunakan primer
umum yang mana ianya memerlukan kajian yang lebih lanjut. Mutasi hemoglobin
Monroe dan codon 8 (-AA) yang jarang berlaku di wilayah Qazvin juga telah ditemui.
Keputusan-keputusan dari analisis HRM adalah sangat bertepatan dengan jujukannya.
“Real time-PCR” telah menghasilkan DNA yang cukup bagi analisis pencairan
pendafluor yang merangkumi amplifikasi dan analisis dalam tiub yang sama, sample
yang homogenus, sistem tiub tertutup yang tidak memerlukan langkah-langkah
pemprosesan atau p elemas tanpa sebarang pencemaran. Oleh itu, HRM merupakan
salah satu kaedah yang lebih sensitif, mudah dan kurang kos bagi mengklasifikasikan sampel berbanding kaedah lama. Kaedah HRM juga dapat memudahkan penyaringan bagi 8 jenis mutasi β-thalassemia. Walau bagaimanapun, kelemahan utama HRM ialah ianya tidak dapat menentukan mutasi yang tepat dan ianya memerlukan kaedah rangkaian secara terus untuk mengatasi masalah ini. Kami mencadangkan agar kaedah yang cepat dan tepat bagi penyaringan molecular ini diaplikasikan dengan meluas bagi menentukan jenis mutasi yang biasa terjadi dalam populasi Iran dan kumpulan etnik yang lain serta negara-negara yang mempunyai kadar alel β-thalassemia yang tinggi.
ACKNOWLEDGEMENTS

First of all, I must bow to Almighty Allah, the most gracious and beneficent, whose bounteous blessing enabled me to perceive and for the opportunity given to me to be undertaken my Master studies. My life in Malaysia likes the heterologous expression depending on how to negotiate with people and how to adapt to the different environments. I would like to express my sincere appreciation for them who act as activators or helper genes to make me functional and finally bring me to this glorious moment.

I would like to express my profound appreciation and gratitude to the chairman of my supervisory committee. Furthermore, my sincere thanks to my supervisory committee for their advice, dedications and leading me through the intricacies of a Master Thesis.

My sincere gratitude goes to Professor Dr. Patimah Bt Ismail for her faith, her enthusiastic supervision, and patience for her tremendous guidance, time and effort put forth for this project. I also very grateful for Professor Dr. Asmah Bt Rahmat who has kindly accepted to co supervised this thesis. This work has not been possible without her immense help and guidance. I also would like to extend my deepest gratitude to my co-supervisor, Associate Professor Dr. Mohammad Reza Sarookhani for his guidance, advices, suggestion and support throughout my research.

My sincerest gratitude also goes to the secretarial staff for the good natured assistance received over the years. I have been lucky enough to have the support of many good friends. Thanks my lab mates and colleagues who shared with me the wish, the
happiness, the enthusiasm and resolutions, as well as difficulties and sometimes
tiredness for doing a Master in the different country while actively working.

Thanks to my family for their concern, my parents for moral and financial support and
their prayers during the whole of my life.

The list of thanks also goes to Dr. Daneshi Kohan and Mr. Mohammad Hossien
Ahmadi for facilitating the collection of the samples.

Finally, I wish to special thanks to all β-thalassaemia patients whom I collected their
blood samples from them, who might lay on the bed or being healed from the disease. I
understand lives are such vulnerable to the perilous disease. We should be delighted as
we are still breathing now.
I certify that an Examination Committee has met on 19 April 2011 to conduct the final examination of Seyed Jalal Marashi on his Master thesis entitled β-Globin Gene Polymorphisms in selected Iranian β-Thalassemia Patients Using Real Time PCR-High Resolution Melting" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the degree of Master.

Members of the Examination Committee were as follows:

Name of Chairperson, PhD
Professor. Dr. Seow Heng Fong
School of Graduates Studies
Universiti Putra Malaysia
(Chairman)

Name of Examiner 1, PhD
Professor. Madya Dr. Cheah Yoke Kqueen
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Name of Examiner 2, PhD
Dr. Huzwah Khazaai
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Name of External Examiner, PhD
Assoc. Prof. Dr. Narazah Mohd. Yusoff
Advanced Medical & Dental Institute
Universiti Sains Malaysia
Malaysia
(External Examiner)

SHAMSUDDIN SULAIMAN, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirements for the degree of Master. The members of the Supervisory Committee are as follows:

Patimah Bt Ismail, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Asmah Bt Rahmat, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Mohammad Reza Sarookhani, PhD
Associate Professor
Faculty of Public Health and Paraclinics
Qazvin University of Medical Sciences
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously and it is not any other institution concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

SEYED JALAL MARASHI

Date: 19.Apr.2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td></td>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Background of the study</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Research problems</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Objectives of the study</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>Inherited Hemoglobin Disorders</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Hemoglobin Structures</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Thalassemia</td>
<td>9</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Etiology</td>
<td>11</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Pathophysiology</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>The history of thalassemia</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Beta-Thalassemia</td>
<td>15</td>
</tr>
<tr>
<td>2.5.1</td>
<td>β-Globin Gene Cluster</td>
<td>15</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Molecular Basis of β-thalassemia</td>
<td>16</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Phenotypes of β-thalassemia: Trait and Disease</td>
<td>19</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Prevalence and Epidemiology of β-thalassemia</td>
<td>20</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Diagnosis of β-Thalassemia</td>
<td>22</td>
</tr>
<tr>
<td>2.5.6</td>
<td>β-thalassemia Major</td>
<td>25</td>
</tr>
<tr>
<td>2.5.7</td>
<td>Clinical Manifestations</td>
<td>26</td>
</tr>
<tr>
<td>2.6</td>
<td>HbA2 Measurement in thalassemia Screening</td>
<td>29</td>
</tr>
<tr>
<td>2.7</td>
<td>Importance of Screening Programmes</td>
<td>29</td>
</tr>
<tr>
<td>2.8</td>
<td>Thalassemia Carrier Identification</td>
<td>31</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Full blood Count/Red Cell Indices</td>
<td>31</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Osmotic Fragility Test (OFT)</td>
<td>32</td>
</tr>
<tr>
<td>2.8.3</td>
<td>Hb Analysis</td>
<td>32</td>
</tr>
<tr>
<td>2.9</td>
<td>Polymorphisms</td>
<td>33</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Genetic polymorphisms</td>
<td>33</td>
</tr>
<tr>
<td>2.9.2</td>
<td>Single nucleotide polymorphisms (SNPs)</td>
<td>34</td>
</tr>
<tr>
<td>2.9.3</td>
<td>Uses of polymorphisms</td>
<td>34</td>
</tr>
<tr>
<td>2.10</td>
<td>Polymerase Chain Reaction (PCR)</td>
<td>35</td>
</tr>
<tr>
<td>2.10.1</td>
<td>General Principles of PCR</td>
<td>35</td>
</tr>
</tbody>
</table>
2.10.2 Application of PCR in the Diagnosis of β-thalassaemia 36
2.10.3 Real Time PCR 37
2.11 High Resolution Melting Assay 38
 2.11.1 HRM advantage and disadvantage 43

3 MATERIALS AND METHODS
3.1 Study Design 45
 3.1.1 Ethic Approval 45
 3.1.2 Sample Collection and storage 46
 3.1.3 Clinical data and laboratory findings of patients 46
3.2 Whole Blood DNA Extraction 47
 3.2.1 DNA purity quantification 48
3.3 PCR Optimization 48
3.4 Mutation detection using Real Time PCR-High Resolution Melting 49
 3.4.1 Preparation of Primers and Reagents 49
 3.4.2 Real Time-Polymerase Chain Reaction 53
 3.4.3 Mutation screening using High Resolution Melting(HRM) assay 53
 3.4.4 HRM background information 54
3.5 Gel electrophoresis assay 54
3.6 DNA Purification of the PCR product 55
3.7 Automated DNA Sequencing 57
 3.7.1 Sequencing Analysis 57
3.8 Statistical Analysis 58

4 RESULTS
4.1 Single Nucleotide Polymorphisms for IVS-II(G-A)1 64
4.2 Single Nucleotide Polymorphisms for IVS-I(G-A)110 65
4.3 Single Nucleotide Polymorphisms for IVS-I(G-C)5 66
4.4 Frame shift mutation for FSC 8/9 67
4.5 Frame shift mutation for FSC 36/37(-T) 68
4.6 Single Nucleotide Polymorphisms for Codon 30 69
4.7 Single Nucleotide Polymorphisms for IVS-I(T-C)6 70
4.8 Single Nucleotide Polymorphisms for IVS-I(G-A)1 71

5 DISCUSSION 81

6 CONCLUSION AND FUTURE RECOMMENDATION 87

REFERENCES 90
APPENDICES 101
BIODATA OF THE STUDENT 111
LIST OF PUBLICATIONS 112