LYCOPENE AND RED PALM OIL EFFECTS ON HYPOGLYCEMICS AND ANTIOXIDANT IN STREPTOZOTOCIN-INDUCED DIABETIC RATS

SEYED MORTEZA EBADI

FPSK(m) 2011 3
LYCOPENE AND RED PALM OIL EFFECTS ON HYPOGLYCEMIC AND ANTIOXIDANT IN STREPTOZOTOCIN-INDUCED DIABETIC RATS

SEYED MORTEZA EBADI

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA
2011
LYCOPENE AND RED PALM OIL EFFECTS ON HYPOGLYCEMICS AND ANTIOXIDANT IN STREPTOZOTOCEIN-INDUCED DIABETIC RATS

By

SEYED MORTEZA EBADI

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

January 2011
DEDICATION

This thesis is dedicated to the memory of my mother who continued to learn, grow and develop and who had been a source of encouragement and inspiration to me throughout my life.
Abstract of thesis presented to the senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

LYCOPENE AND RED PALM OIL EFFECTS ON HYPOGLYCEMICS AND ANTIOXIDANT IN STREPTOZOTOCIN-INDUCED DIABETIC RATS

By

SEYED MORTEZA EBADI

January 2011

Chairman: Professor Asmah Rahmat, PhD

Faculty: Medicine and Health Sciences

Diabetes mellitus is found to be associated with oxidative damage which co-exists with a reduction in the antioxidant status and may contribute to the pathogenesis of type 2 diabetes by increasing insulin resistance or impairing insulin secretion. The objective of this study was to verify the potential hypoglycemic and antioxidative effects of lycopene and red palm oil on antioxidant status and antioxidant enzymes activities in streptozotocin-induced diabetic rats and to determine free radical scavenging capacity of lycopene and red palm oil. Lycopene and red palm oil of two dosages (10 and 20 mg/kg body weight) were administered to streptozotocin-induced diabetic rats. The rats were force-fed with the supplements once daily for six weeks. For induction of diabetes to rats injected 55 mg/kg body weight of STZ (Streptozotocin) dissolved in 0.05 M citrate buffer (pH 4.5). Compared to the normal group, the treatment of rats with a single dose of
STZ revealed a significant decrease (p<0.05) in total antioxidant status (TAS), activity of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD), plasma insulin level and body weight. The results of this study showed that red palm oil had higher scavenging activity as compared to lycopene. After six weeks of treatment, the rats treated with lycopene and red palm oil at both dosages (10 and 20 mg/kg body weight) have lower fasting glucose levels (27.7% reduction in lycopene 10 mg/kg bw; 34.5% in lycopene 20 mg/kg bw; 32.3% in red palm oil 10 mg/kg bw; 28.4% in red palm oil 20 mg/kg bw) compared to the baseline. SOD activities were found to be significantly (p<0.05) elevated in diabetic groups treated (25.2% increase in lycopene 10 mg/kg bw; 30.5% in lycopene 20 mg/kg bw; 44.8% in red palm oil 10 mg/kg bw; 46.2% in red palm oil 20 mg/kg bw) as compared to the baseline. CAT activities were found to be significantly (p<0.05) increased in diabetic groups treated (21% elevation in lycopene 10 mg/kg bw; 37% in lycopene 20 mg/kg bw; 33.8% in red palm oil 10 mg/kg bw; 35.9% in red palm oil 20 mg/kg bw) as compared to pre-treatment. The lycopene and red palm oil at both dosages showed increase in total antioxidant status (25% increase in lycopene 10 mg/kg bw; 31% in lycopene 20 mg/kg bw; 26% in red palm oil 10 mg/kg bw; 37% in red palm oil 20 mg/kg bw) after six weeks administration as compared to baseline. Insulin level increased in treated groups with lycopene and red palm oil at both dosages (36% increase in lycopene 10 mg/kg bw; 52% in lycopene 20 mg/kg bw; 40.61% in red palm oil 10 mg/kg bw; 61.6% in red palm oil 20 mg/kg bw) as compared to pre-treatment. The administration of lycopene and red palm oil markedly prevented body weight loss starting from 3rd week of lycopene and red palm oil administration in diabetic treated rats. The data of this investigation exhibited that lycopene and red palm oil might possess hypoglycemic activity. These findings suggest that lycopene and red
palm oil may have substantial therapeutic potentials as an antioxidant in diabetes mellitus that increase total antioxidant status. Therefore, lycopene and red palm oil possesses antioxidant properties which work against the oxidative damage in diabetic subjects. These findings indicate antidiabetic capability of lycopene and red palm oil.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah master sains

KESAN LIKOPEN DAN MINYAK KELAPA SAWIT KE ATAS HIPOGLISEMIA DAN ANTIOKSIDAN PADA TIKUS TERARUH STREPTOZOTOCIN

Oleh

SEYED MORTEZA EBADI

Januari 2011

Pengerusi: Profesor Asmah Rahmat, PhD

Fakulti: Perubatan dan Sains Kesihatan

Penyakit kencing manis (Diabetes mellitus) didapati berkaitan dengan kerosakan oksidatif yang wujud apabila terdapat penurunan dalam status antioksidan dan berkemungkinan akan menyebabkan patogenesis diabetes jenis 2 apabila berlakunya peningkatan penebatan insulin atau kerosakan pengeluaran insulin. Objektif kajian ini adalah untuk mengesahkan potensi hipoglisemik dan kesan antioksidan oleh likopen dan minyak kelapa sawit ke atas status dan aktiviti enzim antioksidan pada tikus diabetes teraruh streptozotocin serta menentukan aktiviti pemerangkapan radikal bebas oleh likopen dan minyak kelapa sawit. Dua dos likopen dan minyak kelapa sawit (10 and 20 mg/kg berat badan) diberikan kepada tikus diabetes teraruh streptozotocin. Tikus-tikus dipaksa mengambil suplemen sebanyak sekali sehari selama 6 minggu. Bagi tujuan
pengaruh diabetes ke atas tikus, 55 mg/ kg berat badan streptozotocin (STZ) telah
dilarutkan dalam 0.05 M bufer citrate (pH4.5) dan disuntik pada tikus.

Apabila dibandingkan dengan kumpulan normal, tikus yang disuntik dengan satu dos
STZ menunjukkan penurunan yang signifikan (p<0.05) dalam jumlah status antioksidan,
aktiviti enzim antioksidan catalase (CAT) dan superoxide dismutase (SOD), paras
insulin dalam plasma darah dan berat badan. Hasil kajian ini menunjukkan bahawa
minyak kelapa sawit telah menunjukkan pemerangkapan aktiviti radikal yang lebih
tinggi berbanding likopen. Selepas 6 minggu tempoh rawatan suplemen, tikus yang
dirawat dengan likopen dan minyak kelapa sawit pada kedua-dua dos menunjukkan
penurunan dalam paras gula dalam darah (27.7% penurunan dalam 10 mg/kg berat
badan likopen; 34.5% dalam 20 mg/kg berat badan likopen; 32.3% dalam 10 mg/kg
berat badan minyak kelapa sawit; 28.4% dalam 20 mg/kg berat badan minyak kelapa
sawit) apabila dibandingkan dengan sebelum rawatan. Aktiviti SOD menunjukkan
peningkatan yang signifikan (p<0.05) dalam kumpulan diabetes selepas rawatan
suplemen(25.2% peningkatan dalam 10 mg/kg berat badan likopen; 30.5% dalam 20
mg/kg berat badan likopen; 44.8% dalam 10 mg/kg berat badan minyak kelapa sawit;
46.2% dalam 20 mg/kg berat badan minyak kelapa sawit) apabila dibandingkan dengan
sebelum rawatan. Aktiviti CAT juga menunjukkan peningkatan yang signifikan (p<0.05)
dalam kumpulan diabetes yang dirawat(21% peningkatan dalam 10 mg/kg berat badan
likopen; 37% dalam 20 mg/kg berat badan likopen; 33.8% dalam 10 mg/kg berat badan
minyak kelapa sawit; 35.9% dalam 20 mg/kg berat badan minyak kelapa sawit) apabila
dibandingkan dengan sebelum rawatan. Likopen dan minyak kelapa sawit pada kedua-dua
dos menunjukkan peningkatan dalam jumlah status antioksidan (25% peningkatan dalam
10 mg/kg berat badan likopen; 31% dalam 20 mg/kg berat badan likopen; 26% dalam 10
mg/kg berat badan minyak kelapa sawit; 37% dalam 20 mg/kg berat badan minyak kelapa sawit) selepas 6 minggu rawatan suplemen berbanding sebelum rawatan. Selain itu, paras insulin juga meningkat dalam kumpulan rawatan dengan likopen dan minyak kelap sawit pada kedua-dua dos (36% peningkatan dalam 10 mg/kg berat badan likopen; 52% dalam 20 mg/kg berat badan likopen; 40.61% dalam 10 mg/kg berat badan minyak kelapa sawit; 61.6% dalam 20 mg/kg berat badan minyak kelapa sawit) apabila dibandingkan dengan sebelum rawatan. Pemberian likopen dan minyak kelapa sawit dengan nyata telah menghalang penurunan berat badan bermula pada minggu ketiga rawatan suplemen ke atas tikus kumpulan diabetes. Data dari hasil kajian ini menunjukkan likopen dan minyak kelapa sawit berupaya memberikan kesan aktiviti hipoglismeik. Selaian itu, kajian ini juga menunjukkan likopen dan minyak kelapa sawit berupaya memberikan potensi teraputik yang tinggi sebagai antioksidan dengan meningkatkan paras jumlah status antioksidan dalam darah. Oleh itu, likopen dan minyak kelapa sawit berupaya memberikan sifat antioksidan yang boleh menghalang kerosakan oksidatif ke atas subjek diabetes. Kajian ini juga menunjukkan keupayaan likopen dan minyak kelapa sawit sebagai antidiabetik.
ACKNOWLEDGEMENTS

In the Name of Allah, the Most Benevolent and the Most Merciful.

First and foremost deepest gratitude and appreciation is expressed to my supervisor Prof Dr. Asmah Rahmat, for her ideas, support, guidance and patience towards completing the research.

I am also indebted to member of my supervisory committee and I wish to express my deepest thanks to Dr. Huzwah Khazaai for her invaluable suggestions that had enable me to carry on with my project successfully.

Finally my gratitude’s to my lovely wife (Hanieh) and my parents who are my inspiration, who give support, and trust in whatever I do. I would like to express my appreciation to the laboratory staff (Mr. Abul, Mrs. Lina, Mrs. Safarina, Mr. Ehsan and Mr. Andy) and to everyone who helped me directly or indirectly throughout this project.
I certify that a Thesis Examination Committee has met on 12 January 2011 to conduct the final examination of Seyed Morteza Ebadi on his Master degree thesis entitled “Lycopene and Red Palm Oil Effects on Hypoglycemics and Antioxidant in Streptozotocin-Induced Diabetic Rats” in accordance with the Universities and University College Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A)106] 15 March 1998. The committee recommends that the student be awarded the Master of Science.

Members of the Examination Committee are as follows:

Zuraini bt Hj Ahmad, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Norhaizan bt Mohd Esa, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Fauziah bt Othman, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Azimahtol Hawariah Lope Pihie, PhD
Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(External Examiner)

HASANAH MOHD GHAZALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Asmah bt Rahmat, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Dr. Huzwah Khazaai, PhD
Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at other institutions.

SEYED MORTEZA EBADI

Date: 12 January 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background 1
1.2 Problem Statement 5
1.3 Research Objectives 7

2 LITERATURE REVIEW

2.1 Diabetes Mellitus 8
2.1.1 Definition 8
2.1.2 Classification 8
2.1.3 Diagnosis 10
2.1.4 Complications 11
2.1.5 Prevalence of Diabetes in the World 13
2.1.6 Prevalence of Diabetes in Asia 14
2.2 Free Radical 15
2.2.1 ROS and RNS 15
2.3 Oxidative Stress 16
2.3.1 Oxidative Stress and Diabetes 16
2.3.2 Oxidative Stress and Insulin 18
2.4 Antioxidant 19
2.4.1 Definition 20
2.4.2 Enzymatic Antioxidants 20
2.4.3 Non-enzymatic Antioxidant 21
2.4.4 Antioxidants as a Defence System 21
2.4.5 Antioxidants and Diabetes 22
2.4.6 Antioxidant, Oxidative Stress and Diabetes 24

2.5 Lycopene 26
2.5.1 Definition 26
2.5.2 Recommended Lycopene Intakes 27
2.5.3 Lycopene Sources 27
2.5.4 Lycopene Bioavibility 28
2.5.5 Lycopene as an Antioxidant 28
2.5.6 Singlet oxygen quenching mechanism 30
2.5.7 Lycopene level and Oxidative Stress 31
2.5.8 Lycopene Effects on Oxidative Stress in Diseases 32
2.5.9 Lycopene and Diabetes 34
2.5.10 Carotenoids and Insulin Level 37

2.6 Red Palm Oil 39
2.6.1 Bioavailability of β-carotene from Red Palm Oil 41
2.6.2 Bioavailability of Vitamin A from Red Palm Oil 41
2.6.3 Antioxidants in Red Palm Oil 42
2.6.4 Red Palm Oil and Diabetes 47
2.6.5 Vitamin E and Insulin 51

3 MATERIALS AND METHODS 53
3.1 Chemicals 53
3.2 Free Radical Scavenging assay (DPPH) 53
3.3 Experimental Animals 54
3.4 Experimental Design 55
3.5 Induction of Experimental Diabetes 57
3.6 Treatment Administration 57
3.7 Cardiac Puncture Blood Sampling 58
3.8 Body weight Record 58
3.9 Biochemical Investigations 59
3.9.1 Estimation of Glucose Level 59
3.9.2 Estimation of Catalase (CAT) Activity 59
3.9.3 Estimation of Superoxide Dismutase Activity (SOD) 60
3.9.4 Estimation of Total Antioxidant Status (TAS) 63
3.9.5 Estimation of plasma Insulin level 64
3.10 Statistical analysis 66
4 RESULTS

4.1 Free Radical Scavenging assay (DPPH) 67
4.2 Experimental Diabetes and Normal Rats 68
 4.2.1 Fasting Blood Glucose 68
 4.2.2 SOD and CAT activities 69
 4.2.3 Plasma Insulin Level 69
 4.2.4 TAS 70
4.3 Effects of Lycopene and Red palm oil on Body Weight 71
4.4 Effects of Lycopene and Red palm oil on Glucose Level 73
4.5 Effects of Lycopene and Red palm oil on Superoxide Dismutase (SOD) 75
4.6 Effects of Lycopene and Red palm oil on Catalase (CAT) 77
4.7 Effects of Lycopene and Red palm oil on Total Antioxidant Status (TAS) 79
4.8 Effects of Lycopene and Red palm oil on Plasma Insulin Level 81

5 DISCUSSION 83

5.1 Induction of Experimental Diabetic Rats 83
5.2 Free Radical Scavenging assay (DPPH) of lycopene and red palm oil 85
5.3 Effects of Lycopene and Red palm oil on Body Weight 86
5.4 Effects of Lycopene and Red palm oil on Glucose Level 88
5.5 Effects of Lycopene and Red palm oil on SOD and CAT 90
5.6 Effects of Lycopene and Red palm oil on TAS 95
5.7 Effects of Lycopene and Red palm oil on Insulin Level 97

6 CONCLUSION AND RECOMMENDATIONS 101

6.1 Conclusion 101
6.2 Recommendations 106

REFERENCES 108
APPENDICES 131
BIODATA OF STUDENT 137