UNIVERSITI PUTRA MALAYSIA

MOLECULAR CHARACTERIZATION OF ESBL PRODUCING KLEBSIELLA SPECIES ISOLATED FROM SEVERAL MAJOR HOSPITALS IN IRAN

SOBHAN GHAFOURIAN

FPSK(m) 2011 17
MOLECULAR CHARACTERIZATION OF ESBL PRODUCING KLEBSIELLA SPECIES ISOLATED FROM SEVERAL MAJOR HOSPITALS IN IRAN

By

SOBHAN GHAFOURIAN

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

July 2011
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

MOLECULAR CHARACTERIZATION OF ESBL PRODUCING KLEBSIELLA SPECIES ISOLATED FROM SEVERAL MAJOR HOSPITALS IN IRAN

By

SOBHAN GHAFOURIAN

July 2011

Chairman: Associate Professor Zamberi Bin Sekawi, PhD
Faculty: Medicine and Health Sciences

Extended Spectrum beta-lactamas have been found in a wide range of Gram-negative rods. However, the vast majority of strains expressing these enzymes belong to the Enterobacteriaceae family. K.pneumoniae remains as the major ESBL producer. The strong selective pressure for the use of beta-lactam drugs exerted on ESBL producer strains may lead to the selection of strains that hyper produce ESBLs. The plasmids that harbor genes encoding ESBLs frequently contain other genes encoding mechanisms of resistance to aminoglycoside and cotrimoxazole.

Over the last two decades, the incidence of infections caused by multidrug-resistant Klebsiella strains has increased. Extended spectrum beta-lactamase enzymes were first described in K. pneumoniae isolates in 1983 in Europe. The focus of this study was To determine epidemiology of ESBL-producing K. pneumoniae and K. oxytoca in Iran during different seasons, To identify the prevalence of ESBLs producing K. pneumoniae and K. oxytoca in Iran during different seasons. To determine the prevalence of blaTEM, SHV and CTX-M responsible for ESBL production among ESBL-producing K. pneumoniae and K. oxytoca in the different wards and hospitals.
in Iran. To investigate the susceptibility of *K. pneumoniae* and *K. oxytoca* producing ESBLs towards non beta- lactam antibiotics. To identify the various clonal types of ESBL-producing *K. pneumoniae* in Milad hospital. To detect the dominant ESBL clonal types. Six hundred and seven *Klebsiella spp* were identified during the period March 2007 to April 2008 in three hospitals in three cities (Ilam, Tabriz and Tehran) in Iran. The strains were isolated from urinary tract infections, Intensive care units, surgery wards, lesion infections and Respiratory tract infections. ESBLs were identified by phenotypic and genotypic methods. *Klebsiella spp* producing ESBLs were evaluated against non beta- lactam antibiotics. MLST was performed for dissemination of ESBL producing *K. pneumoniae*. Of the six hundred and seven *Klebsiella spp* isolated from the three hospitals, 34.26%, 16.96% and 43.65% *K. pneumoniae* were obtained from Ilam, Emam Reza and Milad hospitals, respectively. Further, 1.98%, 0.66% and 2.47% *Klebsiella oxytoca* were also obtained from Ilam, Emam Reza and Milad hospitals, respectively. The findings in this study revealed that 36.5%, 51.7% and 45.6% of *K.pneumoniae* were producing ESBLs in Ilam, Milad and Emam Reza hospitals, respectively. The highest ESBLs production of *K.pneumoniae* observed in winter in RTI (54.5%). As for *K.oxytoca* it showed that 25%, 73.3% and 75% of the isolates were positive for ESBLs production in Ilam, Milad and Emam Reza hospitals, respectively. The most *K.oxytoca* and ESBLs producing *K.oxytoca* recurred in winter. Resistance towards non-beta-lactam antibiotics in *K. oxytoca* was only observed in Milad hospital and found in cotrimoxazol and amikacin. In Ilam hospital, of the seventy-six *K.pneumoniae* producing ESBLs, 9.21% were resistant to amikacin, 3.94% to ciprofloxacin and 11.74%, to cotrimoxazol. Of the one hundred and thirty seven *K.pneumoniae* producing ESBLs in Milad hospital, 35.8%, 21.2% and 38.7% of them were resistant
to amikacin, ciprofloxacin and cotrimoxazol, respectively. Resistance toward all the antibiotic in this study in cold seasons was more than the other seasons. In Emam Reza hospital, 21.2%, 4.25%, 21.2% and 0% of *K. pneumoniae* producing ESBLs showed resistance to amikacin, ciprofloxacin, cotrimoxazol and imipenem, respectively. In all the *K. oxytoca*, blaSHV was responsible for the production of ESBLs. Thirty-five blaTEM, two hundred and eighteen blaSHV and fifty-six blaCTX-M were responsible for ESBLs production in *K. pneumoniae*. The analysis showed significant difference of ESBLs production by *K. pneumoniae* in winter (53%) in comparison to the other seasons with *P* ≤ 0.01. *K. pneumoniae* producing ESBLs more detected in RTI with *P* ≤ 0.03. The results also showed significance different in to blaSHV that was dominant gene responsible for ESBLs production *P* ≤ 0.049 but no significant difference observed in blaTEM and blaSHV.

Based on the nucleotide variations of the five selected genetic loci, twenty-five different STs could be identified among thirty *K. pneumoniae* producing ESBLs isolates. The most frequently encountered were ST14 (four isolates) ST16 (two isolates) and ST18 (two isolates). Six colonal complexes were also identified. This study, conducted in different seasons and on different wards, is the first of its kind in the world. The prevalence of ESBLs among clinical isolates varied in different hospital in Iran, the highest prevalence was observed in Milad hospitals (51.6%) follow by Emam Reza (43.7%) and Ilam hospitals (36.5%). Generally, the findings released more prevalence of ESBLs production in Iran. The results showed that the highest ESBLs production was found in *K. oxytoca* isolated from patients in Emam Reza Hospital, Tabriz, and the lowest frequency of ESBLs production was found in *K. oxytoca* in Ilam hospital. BlaSHV was found as dominant gene responsible for ESBLs production by *K. pneumoniae* and *K. oxytoca* and followed by blaCTX-M.
Different clonal complex and St obtained. CC1 and ST14 were found as a dominant CC and ST, respectively. ESBL-producing isolates in this study were found to be concomitantly resistant to various antibiotic classes, indicating the co-transfer of a range of genes accounting for resistance to these antibiotics. Therefore, therapeutic choices became limited in our hospital. Based on our in vitro findings, imipenem was the most effective antibiotic against ESBL-producing *K. pneumoniae*, followed by Ciprofloxacin.

Key Words: ESBLs, *Klebsiella spp*, MLST, Iran
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENCIRIAN MOLEKUL BAGI SPESIES KLEBSIELLA YANG MENGHASILKAN ESBL YANG DIPENCILKAN DARIPADA BEBERAPA HOSPITAL YANG UTAMA DI IRAN

Oleh

SOBHAN GHAFOURIAN

Pengerusi : Professor Madya Zamberi Bin Sekawi, PhD

Fakulti : Perubatan Dan Sains Kesihatan

Extended Spektrum beta-laktamase telah dijumpai dalam pelbagai rod Gram-negatif. Walau bagaimanapun, majoriti strain yang mengeluarkan enzim ini terdiri daripada keluarga Enterobacteriaceae. K. pneumoniae kekal sebagai pengeluar ESBL utama. Tekanan selektif yang kuat ke atas strain pengeluar ESBL dalam penggunaan antibiotik beta-laktam boleh menyebabkan pemilihan strain yang menghasilkan ESBLs secara berlebihan. Plasmids yang membawa gen pengekodan ESBLs sering mengandungi gen pengekodan mekanisme rintangan aminoglycoside dan cotrimoxazole. Sepanjang dua dekad yang lalu, insiden jangkitan yang disebabkan oleh Klebsiella strain rintangan pelbagai telah meningkat. Extended spektrum enzim beta-laktamase telah mula diterangkan dalam K. pneumoniae diasingkan pada tahun 1983 di Eropah. Penyelidikan yang dijalankan adalah bertujuan untuk mengkaji epidemiologi molekul bagi bakteria Klebsiella ssp. (yang menghasilkan ESBLs) di kalangan pesakit yang dirawat di hospital yang tertentu di negara Iran, untuk mengkaji keberkesanannya Klebsiella ssp (yang menghasilkan ESBL) terhadap pelbagai jenis antibiotik (jenis bukan β-laktam) pada musim yang berbeza, untuk mengetahui pelbagai jenis klon Klebsiella pneumonia (yang menghasilkan ESBL) dari hospital Milad dan untuk menentukan jenis klon ESBL yang dominan. Enam ratus
amikacin, ciprofloxacin dan cotrimoxazol. Bagi hospital Milad pula, sebanyak 137 isolat *K. pneumoniae* (yang menghasilkan ESBLs) telah diperoleh dengan peratus rintang sebanyak 35.8%, 21.2% dan 38.7% masing-masing bagi amikacin, ciprofloxacin dan cotrimoxazol. Kerintangan terhadap semua antibiotik dalam kajian ini, pada musim sejuk adalah lebih daripada musim yang lain. Berlainan pula dengan kerintangan antibiotik yang ditunjukkan oleh isolat *K. pneumoniae* (yang menghasilkan ESBLs) dari hospital Emam Reza yang mencatatkan 21.2%, 4.25%, 21.2% dan 0% dengan masing-masing adalah amikacin, ciprofloxacin, cotrimoxazol dan imipenem. Analisis menunjukkan perbezaan ketara pengeluaran ESBLs oleh *K. pneumoniae* pada musim sejuk (53%) berbanding dengan musim lain dengan *P* ≤ 0.01. *K. pneumoniae* menghasilkan ESBLs lebih kerap diikat pada pesakit RTI dengan *P* ≤ 0.03. Keputusan juga menunjukkan perbezaan yang signifikan untuk blaSHV sebagai gen dominan yang bertanggungjawab bagi pengeluaran ESBLs (*P* ≤ 0.049) tetapi tiada perbezaan yang signifikan yang diperhatikan dalam blaTEM dan blaSHV. Gen blaSHV berperanan penting untuk penghasilan ESBLs bagi *K. oxytoca*. manakala gen blaTEM, blaSHV dan blaCTX-M pula bertanggungjawab untuk penghasilan ESBLs bagi *K. pneumoniae* dengan masing-masing adalah 35, 218 dan 56. Berdasarkan kepada variasi genetik bagi 5 lokus genetik, 25 STs yang berbeza telah dikenal pasti daripada 30 isolat *K. pneumonia* (yang menghasilkan ESBLs). Kekerapan yang tinggi adalah bagi strain ST14 iaitu sebanyak 4 isolat, 2 isolat bagi ST16 dan 2 isolat bagi ST18. Prevalens ESBLs di kalangan isolat klinikal yang berbeza-beza di hospital yang berlainan di Iran, prevalens tertinggi diperhatikan di hospital-hospital Milad (51.6%) diikuti dengan Emam Reza (43.7%) dan hospital Ilam (36.5%). Secara amnya, penemuan ini mengesahkan prevalens ESBLs di Iran. BlaSHV didapati sebagai gen dominan yang bertanggungjawab bagi pengeluaran

Kata Kunci: ESBLs, *Klebsiella* spp, MLST, Iran
ACKNOWLEDGEMENTS

I would like to thank to Associate Professor Dr. Zamberi Bin Sekawi as the chairman of my supervisory committee, for her continues support and guidance throughout the years. I would also like to thank to my co-supervisors Associate Professor Dr. Nourkhoda Sadeghifard and Associate Professor Marian Nor Shamsdin and Dr. Vasanth Kmari Neela who have been sharing their knowledge and experience in carrying out the research. Their guidance and advice given in this research is also highly appreciated.

I thank my parents for their love, their support, and their confidence throughout the past twenty-nine years. My parents have always put education as a first priority in my life, and raised me to set high goals for myself. They taught me to value honesty, courage, and humility above all other virtues. I have always needed to work hard to achieve my goals in life and they have always been there for me as an unwavering support. I dedicate this work to them, to honor their love, patience, and support during these years. Last but not least, appreciations also go to my friends and my uncle Mohammad who so support me after death of my father during my study and helped me in completing this research.
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

SOBHAN GHAFOURIAN

Date:
I certify that an Examination Committee has met on 22/07/2011 to conduct the final examination of sobhan Ghafourian on his Master of Sciences thesis entitled ‘Molecular characterization of ESBL producing *Klebsiella* species isolated from several major hospitals in Iran’ in accordance with University Putra Malaysia (Higher Degree) and Universiti Pertanian Malaysia (Higher Degree) Regulations. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Chairman, PhD
Prof. Madya Dr. Rokiah bt Mohd Yusof
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Examiner 1, PhD
Prof. Madya Dr. Chong Pei Pei
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Examiner 2, PhD
Prof. Madya Dr. Chean Yoke Kqueen
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

External Examiner, PhD
Prof. Madya Dr. Noraziah Mohammad Zin
Faculty of Medicine and Health Sciences
Universiti Kebangsaan Malaysia
(External Examiner)

Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master Sciences. The members of the Supervisory Committee were as follows:

Zamberi bin Sekawi, MD
Associated Professor
Faculty of Medical and Health Sciences
Universiti Putra Malaysia
(Chairman)

Nourkhoda Sadeghifard, PhD
Associated Professor
Ilam University of Medical Sciences, Iran
(Member)

Vasanth Kumari Neela, PhD
Senior Lecturer
Faculty of Medical and Health Sciences
Universiti Putra Malaysia
(Member)

Mariana Nor Shamsudin, PhD
Associated Professor
Faculty of Medical and Health Sciences
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
Table of Contents

ABSTRACT ii
ABSTRAKT vi
ACKNOWLEDGEMENT x
APPROVAL xi
DECLARATION xiii
LIST OF FIGURES xiv
LIST OF TABLES xix

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW 7

 2.1 Classification of beta-lactamases 9
 2.1.1 Group 1 (Ambler Class C) beta-lactamases 10
 2.1.2 Group 2 (Ambler Class A) enzymes 11
 2.1.3 Group 3 (Ambler Class B) enzyme 11
 2.1.4 Group 4 beta-lactamases 12

 2.2 ESBL TYPES 12
 2.2.1 TEM - beta – lactamases 12
 2.2.2 SHV - beta – lactamases 12
 2.2.3 CTX - M and Toho- beta – lactamases 13

 2.3 Epidemiology of ESBLs 14
 2.3.1 Europe 14
 2.3.2 South and Central America 15
 2.3.3 North America 16
 2.3.4 Africa and the Middle East 17
 2.3.5 Australia 17
 2.3.6 Asia 18

 2.4 Study of ESBLs 19

 2.5 Risk Factors for Colonization and Infection with ESBL Producers 26

 2.6 Spectrum of Clinical Disease 28

3 MATERIALS AND METHODS 32

 3.1 Bacterial Strains 32
 3.2 Sample collection 32
 3.2.1 Respiratory tract infection 32
 3.2.2 Urinary tract infection 32
3.2.3 ICUs 33
3.2.4 Surgery ward 33
3.2.5 Lesion infection 33
3.3 Identification of *Klebsiella* spp 34
3.4 Detection of *Klebsiella* spp producing ESBLs 34
 3.4.1 ESBL screening methods - Standard disc diffusion method 34
 3.4.2 Phenotypic confirmatory method 35
3.5 Effect of non beta-lactame antibiotics against *Klebsiella* spp Producing ESBLs 35
3.6 Antibiogram method 36
 3.6.1 McFarland turbidity standard 36
 3.6.2 Bacteria Preparation of inoculums 36
 3.6.3 Inoculation procedure 36
 3.6.4 Antimicrobial disks 37
3.7 Molecular method 37
 3.7.1 DNA extraction 37
 3.7.2 PCR 38
 3.7.3 MLST (Multilocus sequence typing) 40
 3.7.4 Detection of bla TEM, SHV and CTX-M 41
3.8 Statistic analysis 42

4 RESULTS 43

4.1 Ilam hospitals 45
 4.1.1 Screening stage of *K.pnemoniae* 47
 4.1.2 Confirming stage of *K.pnemoniae* 55
 4.1.3 Effects of non-beta-lactam antibiotics against *Klebsiella pneumonias* producing ESBLs 59
 4.1.4 PCR results of *K.pnemoniae* 63
 4.1.5 Screening stage of *K.oxytoca* 67
 4.1.6 Confirming stage of *K.oxytoca* 70
 4.1.7 PCR Results 72
4.2 Milad hospital 73
 4.2.1 Screening stage of *K.pnemoniae* 74
 4.2.2 Confirming stage of *K.pnemoniae* 80
 4.2.3 Effects of non-beta-lactam antibiotics against *Klebsiella pneumonias* producing ESBLs 87
 4.2.4 PCR results of *K.pnemoniae* 90
 4.2.5 MLST 96
 4.2.6 Screening stage of *K.oxytoca* 101
 4.2.7 Confirming stage of *K.oxytoca* 103
 4.2.8 PCR Results of *K.oxytoca* 106
4.3 Emam Reza hospital in Tabriz 106
 4.3.1 Screening stage of *K.pnemoniae* 107
 4.3.2 Confirming stage of *K.pnemoniae* 116
4.3.3 Effects of non-beta-lactam antibiotics
Klebsiella pneumoniae producing ESBLs 120
4.3.4 PCR results of K.pnemoniae 123
4.3.5 Screening stage of K.oxytoca 128
4.3.6 Confirming stage of K.oxytoca 129

DISCUSSION 134

CONCLUSION 151

REFERENCES 152
APPENDICES 168
LIST OF PUBLICATIONS 219
BIODATA OF STUDENT 220