UNIVERSITI PUTRA MALAYSIA

ANTIFIBROTIC EFFECT OF TRANSFORMING GROWTH FACTOR BETA 1 INHIBITOR EXTRACT FROM STREPTOMYCES SP. STRAIN H6552 ON HUMAN HEPATIC STELLATE CELLS

LIM CHOOI LING

FPSK(p) 2010 1
ANTIFIBROTIC EFFECT OF TRANSFORMING GROWTH FACTOR
BETA 1 INHIBITOR EXTRACT FROM STREPTOMYCES SP. STRAIN
H6552 ON HUMAN HEPATIC STELLATE CELLS

By

LIM CHOOI LING

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

January 2010
DEDICATION

~ This thesis is especially dedicated to my dearest husband, Ker Yang, and father, Lim Loong Fatt; one who has dedicated his life to medicine and patient care, and the other to Science education.

A short history of medicine

“Doctor, I have an earache…”

Doctor’s reply:

2000 B.C. – “Here, eat this root”

1000 B.C. – “That root is heathen, say this prayer”

1850 A.D. – “That prayer is superstition, drink this potion”

1940 A.D. – “That potion is snake oil, swallow this pill”

1985 A.D. – “That pill is ineffective, take this antibiotic”

2000 A.D. – “That antibiotic is artificial. Here, eat this root.”

We have inevitably come full circle.

~ Author unknown
ANTIFIBROTIC EFFECT OF TRANSFORMING GROWTH FACTOR BETA 1 INHIBITOR EXTRACT FROM STREPTOMYCES SP. STRAIN H6552 ON HUMAN HEPATIC STELLATE CELLS

By

LIM CHOOI LING

January 2010

Chair : Professor Seow Heng Fong, PhD
Faculty : Faculty of Medicine and Health Sciences

Liver fibrosis is a result of the body’s natural wound healing response, but excessive scarring leads to significant morbidity and mortality. Transforming growth factor-beta1 (TGF-β1) inhibitors that hinder the fibrotic mechanism are currently being developed. However, an effective anti-fibrotic drug remains elusive, and in vitro anti-fibrotic studies using hepatic stellate cells (HSCs) are often complicated by the dynamic plasticity of these cells which become spontaneously activated in culture. In this study, we aimed to assess the quiescing effect of seeding LX-2 human HSC line on Matrigel-coated culture plates, and evaluate the anti-fibrotic activity of soil-derived Streptomyces (S.) sp. H6552 extract and/or active fraction, and SB 431542 (a commercial TGF-β receptor inhibitor) on LX-2 cells.

In HSC culture studies, LX-2 cells were seeded either on non-coated or Matrigel-coated culture plates and subjected to fibrotic marker analyses, Oil Red O staining,
and phase contrast microscopy. In the next chapter, S. sp. H6552 was cultured in mannitol-peptone medium and its metabolites were isolated via a ‘shake-flask’ method followed by acetone extraction, HPLC analysis and fractionation of crude H6552 extract. A bioassay-guided screening selection yielded the potential bioactive fraction (F3). Viability tests (MTT assay) were performed to evaluate the cytotoxicity of the crude extract. LX-2 cells were then treated with either the extract, F3 or SB 431542 with or without 8 to 10 ng/mL TGF-β1 induction, followed by assays for anti-fibrotic activity. Proliferation of cells were assessed via \(^{3}H\)-thymidine incorporation, mitochondrial stress was evaluated by MitoTracker Red® fluorescence staining, and cytoplasmic lipid accumulation analyses for quiescence determination was performed via Oil Red O staining. TGF-β1 inhibitory activity was evaluated by Smad reporter and IgA promoter luciferase assays, while expression of fibrotic markers were analysed via Real-Time PCR, immunoblotting, and immunocytochemistry.

A progressively activated morphology was observed in LX-2 cells with prolonged culture on plastic, but this phenomenon was inhibited on Matrigel attachment substrate whereby an adipocytic, quiescent phenotype was conserved with concurrent reduction in TGF-β1-induced alpha-smooth muscle actin (α-sma) protein expression. S. sp. H6552 extract was found to be non-cytotoxic but exerted strong anti-proliferative activity from 1 mg/mL compared to untreated control (p<0.01), while the influence of F3 on proliferation was insignificant. Mitochondrial staining showed a possible antioxidative effect of 2 mg/mL H6552 crude extract on LX-2 cells, while 100 µg/mL F3 induced a quiescent, adipocytic phenotype in 73.85 ± 2.50% of treated
cells (p<0.05). Smad3 reporter activity was inhibited by 50% after 2 mg/mL crude extract treatment compared to TGF-β1-induced cells (p<0.01). TGF-β1-stimulated α-sma mRNA expression was attenuated by crude extract (from 0.125 mg/mL) and F3 (25 µg/mL) treatment, and protein-level α-sma inhibition was also apparent (p<0.05). SB 431542 (25 µM) inhibited proliferation, TGF-β1 (8 ng/mL)-induced Smad3 activation via abrogation of CAGA-luc Smad reporter activity, and α-sma protein and mRNA expression in LX-2 cells (p<0.01). In conclusion, we demonstrated that Matrigel may be a useful culture substrate to maintain LX-2 quiescence in in vitro studies, and S. sp. H6552 extract, F3, and SB 431542 exert anti-fibrotic activity towards human HSCs.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Kedoktoran

KESAN ANTIFIBROTIK EKSTRAK 'TRANSFORMING GROWTH FACTOR BETA 1' DARIPADA STREPTOMYCES SP. STRAIN H6552 TERHADAP SEL HATI 'STELLATE' MANUSIA

Oleh

LIM CHOOI LING

Januari 2010

Pengerusi : Profesor Seow Heng Fong, PhD

Fakulti : Fakulti Perubatan dan Sains Kesihatan

Sel-sel LX-2 menunjukkan morfologi fenotaip aktif setelah dikultur beberapa hari di atas permukaan plastik. Akan tetapi, dengan penggunaan Matrigel, sel-sel diperhatikan mempunyai ciri sel lemak dan pasif dengan ekspresi protein aktin otot licin alfa (α-sma) yang berkurangan. Esktrak S. sp. H6552 didapati tidak sitotoksik tetapi mengakibatkan perencatan pertumbuhan signifikan pada dos 1 mg/mL jika dibandingkan dengan kumpulan kawalan (p<0.01), manakala F3 tidak mempengaruhi...
pertumbuhan sel. Pewarnaan mitokondria menampilkan aktiviti antioksidan yang mungkin oleh 2 mg/mL ekstrak H6552 terhadap sel-sel LX-2, manakala pendedahan kepada 100 µg/mL F3 menyebabkan 73.85 ± 2.50% daripada sel-sel terlibat memperolehi fenotaip pasif dan berlemak (p<0.05). Aktiviti pelapor Smad3 direncatkan sebanyak 50% selepas pendedahan kepada 2 mg/mL ekstrak H6552 berbanding dengan sel-sel yang diujah dengan TGF-β1 (p<0.01). Paras ekspresi gen α-sma yang diujah dengan TGF-β1 dikurangkan dengan rawatan ekstrak dan F3 sebanyak 0.125 mg/mL dan 25 µg/mL masing-masing, manakala perencatan protein α-sma juga jelas diperhatikan (p<0.05). SB 431542 (25 µM) membantutkan pertumbuhan populasi sel, merencatkan lintasan Smad3 melalui pelapor CAGA-luc Smad yang diaktifkan oleh 8 ng/mL TGF-β1, serta mengurangkan ekspresi protein dan gen α-sma dalam sel LX-2. (p<0.01). Kesimpulannya, Matrigel mungkin amat berguna sebagai substrat pertumbuhan untuk mengekalkan keadaan pasif LX-2, dan ekstrak S. sp. H6552, F3, serta SB 431542 berupaya merencatkan aktiviti fibrotik dalam SHS manusia.
ACKNOWLEDGEMENTS

I would like to convey my heartfelt appreciation to several individuals who helped make this project and thesis a success. My deepest gratitude goes to Prof. Dr. Seow Heng Fong, who guided me from the conception of ideas and materials through to the completion of the final written draft. Her patience and unconditional support were essential elements of this work. My co-supervisors, Dr. Maha bt. Abdullah, Dr. Sharmili Vidyadaran, and Prof. Dr. Ho Coy Choke (retired) deserve special mention for their helpful advice, assistance and review of my work.

My sincere gratitude goes to Yip Wai Kien, Kak Masriana, Mandy Leong, Leslie, Choo and Jap Meng for being such patient seniors from whom I learnt so much. I am truly indebted to Mr. Anthonysamy, who was an immense help in the technicalities of laboratory maintenance, and the administrative personnel of Aishah, Kak Zura and Marsitah, who never tires of keeping our paperwork running smoothly. My labmates, especially Rhun Yian, were always there for me to share in the happiness and disappointments of scientific endeavours.

The team of researchers in the Liver Lab of Mount Sinai School of Medicine, New York, was a catalyst to the progress of this project. Prof. Dr. Scott Friedman was an exceptional scientist and tutor - never short of new ideas, wisdom, and concern for his team. My sincere thanks also go to Johnny Loke, who was my guide and teacher, Dr. Feng and Dr. Guo from China, from whom I learnt technical skills and perseverance, Dr. Mirko Tarocchi, and the entire group of outstanding researchers who welcomed me as family throughout the long months of attachment. To Dr. Khor Tin Oo and family who took care of me during the trying times, I thank you.

Finally, but certainly not the least, I would like to thank my understanding husband and godmother as well as my family who were my pillars of strength and source of love and encouragement. My apologies and sincere gratitude goes to those whom I failed to mention but contributed to this project in any manner.
I certify that an Examination Committee has met on 5th January 2010 to conduct the final examination of Lim Chooi Ling on her Doctor of Philosophy (PhD) thesis entitled “Anti-fibrotic Effect of Transforming Growth Factor Beta 1 (TGF-Beta1) Inhibitor Extract from Streptomyces Sp. Strain H6552 on Human Hepatic Stellate Cells” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Examination Committee were as follows:

Mohamad Aziz Dollah, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Asmah Rahmat, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Fauziah Othman, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Looi Lai Meng, PhD
Professor
Faculty of Medicine
Universiti Malaya, Malaysia
(External Examiner)

BUJANG KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Seow Heng Fong, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Maha Abdullah @ Maha-Lakswmi-Pon, PhD
Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Sharmili Vidyadaran, PhD
Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Ho Coy Choke, PhD
Professor
School of Science & Technology
Universiti Malaysia Sabah
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 17 March 2010
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

LIM CHOII LING

Date:
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRAK vi
ACKNOWLEDGEMENTS ix
APPROVAL x
DECLARATION xii
LIST OF TABLES xvii
LIST OF FIGURES xviii
LIST OF ABBREVIATIONS xxix

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW 4
 2.1 Liver Fibrosis 4
 2.1.1 Epidemiology and pathogenesis of liver fibrosis 5
 2.1.2 Diagnostic options in liver fibrosis 9
 2.1.3 Hepatic stellate cells (HSCs) 10
 2.1.4 Treatment strategies of liver fibrosis 28
 2.2 Transforming growth factor-β1 (TGF-β1) 34
 2.2.1 TGF-β-induced Smad-dependent signaling and crosstalk with MAP kinase pathway 36
 2.2.2 Pathological role of TGF-β (carcinogenesis) 40
 2.2.3 Role of TGF-β in liver fibrosis 42
 2.2.4 Anti-TGF-β1 therapeutic strategies against liver fibrosis 45
 2.2.5 SB 431542 TβRI inhibitor 50
 2.3 Natural products and microbial secondary metabolites as therapeutic precursors 53
 2.3.1 Actinomycetes 57
 2.3.2 Streptomyces as a source of bioactive compounds 59
 2.3.3 Novel Streptomyces sp. strain H6552 with therapeutic potential 61
3 GENERAL METHODOLOGY

3.1 Cell culture 66
3.2 3H-Thymidine incorporation assay 67
3.3 DGA-2 luciferase assay 69
3.4 RNA extraction and reverse transcription (RT) 70
3.5 Real-Time PCR 72
3.6 Western Blot (Immunoblotting) 76
3.7 Plasmids 79
 3.7.1 Large-scale isolation and purification of plasmid DNA (Maxiprep) 79
 3.7.2 Transfection with Smad reporter plasmid 81
 3.7.3 Luciferase assay 81
3.8 Immunocytochemistry 82
3.9 Oil Red O intracellular lipid staining 83
3.10 Statistical analysis 84

4 MORPHOLOGICAL AND PROTEIN EXPRESSION OF SB 43152 ON HUMAN HEPATIC STELLATE CELLS 85

4.1 Introduction 85
4.2 Materials and Methods 89
 4.2.1 Matrigel coating 90
 4.2.2 Growth curve analysis 90
 4.2.3 Phase contrast microscopy- morphological analysis 91
 4.2.4 Oil Red O staining 91
4.3 Results 92
 4.3.1 Growth pattern and cellular proliferation changes induced by TGF-β1 and/or SB 431542 92
 4.3.2 SB 431542-induced inhibition of TGF-β1 signaling and modulation of LX-2 gene and protein expression 97
 4.3.3 Effect of Matrigel on LX-2 quiescence 107
4.4 Discussion 116
 4.4.1 Effect of TGF-β1 on the growth pattern, proliferation, and activation of LX-2 HSC 116
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.2</td>
<td>Effect of SB 431542 on TGF-β1-induced signaling, proliferation, and activation of LX-2 cells</td>
<td>117</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Activation of HSC in prolonged culture</td>
<td>124</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Effect of Matrigel on LX-2 quiescence</td>
<td>125</td>
</tr>
<tr>
<td>4.5</td>
<td>Conclusion</td>
<td>129</td>
</tr>
<tr>
<td>5</td>
<td>ANTIFIBROTIC ACTIVITIES OF STREPTOMYCES SP. STRAIN H6552 EXTRACT ON HUMAN HEPATIC STELLATE CELLS</td>
<td>131</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>131</td>
</tr>
<tr>
<td>5.2</td>
<td>Materials and Methods</td>
<td>135</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Culture of Streptomyces sp. H6552</td>
<td>136</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Fermentation and acetone extraction of secondary metabolites (aerobic culture)</td>
<td>136</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Freeze-drying and storage of extract</td>
<td>137</td>
</tr>
<tr>
<td>5.2.4</td>
<td>High-performance liquid chromatography (HPLC) and fraction collection</td>
<td>137</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Cell line treatment with H6552 extract or fractions</td>
<td>138</td>
</tr>
<tr>
<td>5.2.6</td>
<td>MTT cell viability assay</td>
<td>139</td>
</tr>
<tr>
<td>5.2.7</td>
<td>MitoTracker Red® fluorescence staining (analysis of oxidative stress)</td>
<td>141</td>
</tr>
<tr>
<td>5.2.8</td>
<td>Transfection efficiency analysis (GFP)</td>
<td>141</td>
</tr>
<tr>
<td>5.3</td>
<td>Results</td>
<td>143</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Culture and HPLC fractionation of Streptomyces sp. (H6552) extract</td>
<td>143</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Effects of H6552 crude extract and F3 on cellular response</td>
<td>150</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Inhibition of H6552 crude extract and F3 on TGF-β1-induced Smad3 signaling</td>
<td>162</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Effects of H6552 crude extract and F3 on modulation of LX-2 molecular signaling</td>
<td>171</td>
</tr>
<tr>
<td>5.4</td>
<td>Discussion</td>
<td>193</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Culture, extraction, and fractionation of H6552 crude extract</td>
<td>193</td>
</tr>
</tbody>
</table>
5.4.2 Effect of crude extract and F3 on DGA-2 luciferase activity 195
5.4.3 Effect of crude extract and F3 on cell viability and proliferation 197
5.4.4 Mitochondrial stress attenuation in LX-2 cells by H6552 extract treatment 199
5.4.5 Induction of an adipocytic phenotype in F3-treated LX-2 201
5.4.6 Transfection efficiency of LX-2 and dermal fibroblasts 202
5.4.7 Attenuation of Smad reporter luciferase by H6552 extract and F3 205
5.4.8 Gene and protein regulation of LX-2 cells by crude extract and F3 treatment 207
5.4.9 Effect of H6552 extract and F3 on intracellular α-sma expression 214
5.5 Conclusion 216

6 SUMMARY, GENERAL CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH 218
6.1 Summary and general conclusion 218
6.2 Limitations of the study and recommendations for future research 220

REFERENCES 223
APPENDICES 262
BIODATA OF STUDENT 275