EFFECTS OF COLA NUT [COLA NITIDA (VENT.) SCHOTT & ENDL.] AQUEOUS EXTRACT ON RAT LIVER DURING HEPATOCARCINOGENESIS

MOHAMMAD KADIVAR

FPSK(m) 2010 31
EFFECTS OF COLA NUT [COLA NITIDA (VENT.) SCHOTT & ENDL.] AQUEOUS EXTRACT ON RAT LIVER DURING HEPATOCARCINOGENESIS

MOHAMMAD KADIVAR

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2010
EFFECTS OF COLA NUT [*COLA NITIDA* (VENT.) SCHOTT & ENDL.]
AQUEOUS EXTRACT ON RAT LIVER DURING HEPATOCARCINOGENESIS

By

MOHAMMAD KADIVAR

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science.

November 2010
This thesis is dedicated to my lovely parents, Maryam Nowroozalizadeh Shirazi and Mohammad Rahim Kadivar, who taught me the value of education. I am deeply indebted to them for their love, endless support and unwavering faith in me.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

EFFECTS OF COLA NUT [COLA NITIDA (VENT.) SCHOTT & ENDL.] AQUEOUS EXTRACT ON RAT LIVER DURING HEPATOCARCINOGENESIS

By

MOHAMMAD KADIVAR

November 2010

Chair: Professor Fauziah Othman, PhD
Faculty: Medicine and Health Sciences

The effect of Cola nitida aqueous extract in hepatocarcinogenesis induced male Sprague Dawley rat livers, and elemental analysis of the cola nut was studied to investigate the possible anticancer activity. The unprocessed cola nuts were observed for their surface morphological structure under the scanning electron microscope (SEM). Together with the imaging, samples were then elementally analyzed using energy dispersive x-ray microanalysis attached to variable pressure scanning electron microscopy (EDX-VPSEM). SEM study of cola nut illustrates numerous crystals packed in clusters within the cell wall. The elemental analysis results revealed that the cola nut contained high amount of oxygen and carbon, in addition to potassium, phosphorus and magnesium. Potassium, magnesium and phosphorous have been well reported as co-factors of antioxidant enzymes to protect the body from oxygen free radicals. Additionally, these elements play important roles in metabolic mechanisms in the body.
Hepatocarcinogenesis was induced in rat livers according to the modified Solt and Farber method. Diethylnitrosamine (DEN) was injected into the rats at 200 mg/kg body weight to initiate hepatocarcinogenesis and after two weeks this was followed by feeding 0.02% 2-Acetylaminofluorene (AAF) to promote the hepatocarcinogenesis. The DEN/AAF induced rats were treated with 1, 2.5, and 5% (w/v) concentrations of cola nut extract or 0.001, 0.0025, and 0.005% w/v dilutions of glycyrrhizin as a drug control. There were normal and cancer controls; in addition, three groups of normal rats were treated with three concentrations of cola nut to observe the side effect of the cola nut on normal livers.

The body and liver weight profile results of this study showed no significant difference between treated groups compared to normal and cancer controls. The similarity in body weight gain and relative liver weight results might occur because of the short length of the \textit{in vivo} experiment (eleven weeks).

The supplementation of cola nut extract decreased the level of plasma and microsomal GGT and GST tumor marker enzymes significantly in DEN/AAF induced liver tissues even better than glycyrrhizin. Additionally, it was revealed that cola nut extract has no effect on the level of GST and GGT enzymes in normal cells.

The histological and ultrastructural examination as well as the lesions scoring results demonstrated that the cola nut extract reduced neoplastic stage of the hepatocarcinogenic liver cells more than glycyrrhizin based on their abnormal
morphology, inflammation, necrosis, and fibrosis. Moreover, rat’s normal hepatocytes treated with cola nut extract illustrated normal features.

TUNEL assay results showed the significant increase in the number of apoptotic cells in hepatocarcinogenic liver tissues treated with cola nut extract and glycyrrhizin. These results showed that cola nut did not induce the apoptosis in normal liver cells.

Quantitative real-time RT-PCR results revealed that although the level of alpha-fetoprotein (AFP) mRNA increased in DEN/AAF induced liver cells, but the supplementation of the cola nut and glycyrrhizin decreased it predominantly in hepatocarcinogenic liver cells treated with cola nut extract.

These findings suggest that cola nut might act as a promising anticancer against hepatocarcinogenesis with even higher efficacy compared to glycyrrhizin, without any side effects in normal liver cells.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN EKSTRAK AKUEUS COLA NUT [COLA NITIDA (VENT.) SCHOTT & ENDL.] TERHADAP HATI TIKUS SEMASA HEPATOCARCINOGENESIS

Oleh

MOHAMMAD KADIVAR

November 2010

Pengerusi: Profesor Fauziah Othman, PhD
Fakulti: Perubatan dan Sains Kesihatan

Aruhan hepatokarsinogenesis berdasarkan teknik Solt dan Farber yang diubah suai. Sebanyak 200 mg/kg DEN disuntik ke dalam tikus untuk memulakan hepatokarsinogenesis dan selepas 2 minggu diikuti dengan memberi 0.02% AAF dalam makanan untuk penggalakan. Tikus yang diaru DEN/AAF dirawat dengan 1, 2.5, dan 5% (w/v) kepekatan ekstrak cola nut atau 0.001, 0.0025, dan 0.005% w/v glycyrrhizin sebagai dadah kawalan. Terdapat normal dan kawalan kanser, dan 3 kumpulan tikus normal dirawat dengan tiga kepekatan cola nut yang berbeza untuk melihat kesan sampingan cola nut pada hati normal.

Profil berat badan dan hati menunjukkan tiada perbezaan yang ketara antara kumpulan yang dirawat berbanding dengan normal dan kawalan kanser. Persamaan dalam penambahan berat badan dan hasil berat relatif hati kemungkinan berlaku kerana jangka masa eksperimen in vivo yang singkat (11 minggu).

Penambahan ekstrak cola nut mengurangkan paras plasma dan enzim penanda barah mikrosom GGT dan GST dalam tisu hati yang diaru DEN/AAF malah lebih baik dari glycyrrhizin. Malah, ekstrak cola nut juga telah terbukti tiada kesan terhadap paras enzim GST dan GGTs dalam sel normal.

Pemeriksaan histologi dan ultrastruktur beserta hasil skor lesi menunjukkan ekstrak cola nut mengurangkan paras neoplastik hati sel hepatocarcinogenik lebih baik daripada
glycyrrhizin. Tambahan lagi, hepatosit normal yang dirawat dengan ekstrak cola nut menggambarkan ciri-ciri normal.

Asai TUNEL menunjukkan peningkatan yang signifikan dalam bilangan sel apoptotik tisu hati hepatokarsinogenik dirawat dengan ekstrak cola nut dan glycyrrhizin. Hasil ini menunjukkan bahawa cola nut tidak mengaruh apoptosis dalam sel hati normal.

Hasil kuantitatif real-time RT-PCR menunjukkan bahawa walaupun paras AFP mRNA meningkat pada sel hati yang diaruh dengan DEN/AAF, penambahana cola nut dan glycyrrhizin mengurangkan “predominantly” dalam sel hati tikus yang diaruh hepatokarsinogenesis yang dirawat dengan ekstrak cola nut.

Hasil kajian ini menunjukkan bahawa cola nut berkemungkinan bertindak sebagai anti kanser dan agen kemopreventif yang lebih baik berbanding dengan glycyrrhizin, tanpa sebarang kesan sampingan dalam sel hati normal.
ACKNOWLEDGMENT

First and foremost, I have to thank the GOD, without whose gracious help it would have been impossible to accomplish this work.

I would like to express my sincere thanks to Professor Dr. Fauziah Othman for giving me an opportunity to pursue the Master of Science program and for her support and guidance throughout this project. I would also like to thank Professor Dr. Asmah Rahmat for serving as a member of my MSc program committee.

I am thanking all the staff of Faculty of Medicine and Health Sciences as well as Institute of Bioscience for their steady assistance and friendship. Additionally, I would like to thank my friends for their encouragement in my way.

My special gratitude to my hero, my father, and my beloved mother, whose love and affection is the source of inspiration and encouragement for my studies.

Finally yet importantly, I am eternally grateful for my dear wife, Zeynab Adabimohazab, for her love, patience, sacrifices, unlimited support throughout the years, and for being the sunshine of my life.
I certify that a Thesis Examination Committee has met on 16 November 2010 to conduct the final examination of Mohammad Kadivar on his thesis entitled “Effects of Cola Nut [Cola Nitida (Vent.) Schott & Endl.] Aqueous Extract on Rat Liver During Hepatocarcinogenesis” in accordance with the Universities and University College Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A)106] 15 March 1998. The committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Saidi bin Moin, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Patimah binti Ismail, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Chong Pei Pei, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Nor Fadilah Rajab, PhD
Associate Professor
Universiti Kebangsaan Malaysia
(External Examiner)

SHAMSUDDIN SULAIMAN, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 18 January 2011
This thesis was submitted to the senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Fauziah Othman, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Asmah Rahmat, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

MOHAMMAD KADIVAR

Date: 16 November 2010
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION

2. LITERATURE REVIEW

 2.1 Cola nitida

 2.1.1 Cola Nut

 2.1.2 Elemental Analysis of Cola Nut

 2.2 Energy Dispersive X-ray Microanalysis (EDX) Attached to Variable Pressure Scanning Electron Microscopy (VPSEM)

 2.3 Cancer

 2.3.1 Liver Cancer

 2.3.2 Carcinogenesis

 2.3.3 Hepatocarcinogenesis

 2.4 Liver

 2.5 Anticancer Drugs and Glycyrrhizin

 2.6 Chemical Carcinogens

 2.6.1 Diethylnitrosamine (DEN)

 2.6.2 2-Acetylaminofluorene (AAF)

 2.7 Enzyme Tumor Markers Activities

 2.7.1 Gamma-glutamyl Transpeptidase (GGT)

 2.7.2 Glutathione S-transferase (GST)

 2.8 Histology

 2.8.1 Light Microscopy

 2.8.2 Lesion Scoring

 2.8.3 Transmission Electron Microscopy

 2.9 Apoptosis

 2.10 TUNEL Assay

 2.11 Alpha-fetoprotein

 2.11.1 Alpha-fetoprotein Gene Expression and Hepatocellular Carcinoma

 2.11.2 Quantitative Real-Time RT-PCR

 2.11.3 Primer Design
3 MATERIALS AND METHODS

3.1 Cola Nut

3.1.1 Elemental Analysis Using EDX-VPSEM

3.1.2 Preparation of Cola Nut Aqueous Extract

3.2 Diethylaminochloramine Preparation

3.3 2-Acetylaminofluorene Preparation

3.4 In vivo Study

3.4.1 Pre-treatment

3.4.2 Treatment

3.4.3 Post Treatment

3.5 Enzyme Tumor Markers Activities

3.5.1 Preparation of Cytosolic and Microsomal Fractions

3.5.2 Gamma-glutamyl transpeptidase Assay

3.5.3 Glutathione S-transferase Assay

3.6 Histology

3.6.1 Light Microscopy

3.6.2 Lesion Scoring

3.6.3 Transmission Electron Microscopy

3.7 TUNEL Assay

3.8 Real-time Quantitative Reverse Transcriptase Polymerase Chain Reaction

3.8.1 RNA Extraction

3.8.2 Primer Design

3.8.3 Real-time Quantitative RT-PCR

3.8.4 Real-time RT-PCR Results Analysis

3.9 Data Analysis

4 RESULTS

4.1 Elemental Analysis

4.2 In Vivo Study

4.2.1 Body Weight Profile

4.2.2 Liver Weight and Relative Liver Weight

4.3 Histology

4.3.1 Light Microscopy

4.3.2 Lesion Scoring

4.3.3 Transmission Electron Microscopy

4.4 TUNEL Assay

4.5 Enzyme Tumor Markers Activity

4.5.1 Gamma-glutamyl Transpeptidase

4.5.2 Glutathione S-transferase

4.6 Expression Level of Alpha-Fetoprotein Gene (Real-Time RT-PCR)

4.6.1 Primer Design

4.6.2 Quantitative Real-Time RT-PCR
5 DISCUSSION

5.1 Elemental Analysis of Cola Nut
5.2 Body Weight profile, Liver Weight and Relative Liver Weight
5.3 Tumor Markers Enzymes Activity
 5.3.1 Gamma-glutamyl Transpeptidase (GGT)
 5.3.2 Glutathione S-transferase (GST)
5.4 Histology
 5.4.1 Light Microscopy
 5.4.2 Lesion Scoring
 5.4.3 Transmission Electron Microscopy
5.5 Detection of Apoptosis by TUNEL Assay
5.6 Alfa-Fetoprotein Gene Expression

6 CONCLUSION

BIBLIOGRAPHY
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS