UNIVERSITI PUTRA MALAYSIA

AMBIENT AIR POLLUTION AND ITS ASSOCIATION WITH THE RESPIRATORY HEALTH OF ASTHMATIC PRIMARY SCHOOL CHILDREN IN SELECTED URBAN, RURAL AND INDUSTRIAL AREAS IN SELANGOR AND KUALA LUMPUR

JUNAIDAH BINTI ZAKARIA

FPSK(m) 2010 30
AMBIENT AIR POLLUTION AND ITS ASSOCIATION WITH THE RESPIRATORY HEALTH OF ASTHMATIC PRIMARY SCHOOL CHILDREN IN SELECTED URBAN, RURAL AND INDUSTRIAL AREAS IN SELANGOR AND KUALA LUMPUR

By

JUNAIDAH BINTI ZAKARIA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

December 2010
Abstract of thesis presented to the senate of University Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

AMBIENT AIR POLLUTION AND ITS ASSOCIATION WITH THE RESPIRATORY HEALTH OF ASTHMATIC PRIMARY SCHOOL CHILDREN IN SELECTED URBAN, RURAL AND INDUSTRIAL AREAS IN SELANGOR AND KUALA LUMPUR

By

JUNAIDAH BINTI ZAKARIA

December 2010

Chair: Prof. Zailina binti Hashim, PhD

Faculty: Faculty of Medicine and Health Sciences

Background: The influence of air pollution on asthma and allergies still remains a debate. Many researches have shown that air pollution could affect the respiratory health especially for susceptible groups such as asthmatic children. A cross-sectional comparative study was intended to analyze the association of air pollution and respiratory health in asthmatic children from January to December 2008.

Objective: The main objective of this research was to study the association between air pollution exposures with the respiratory health among asthmatic primary school children living in selected urban, rural and industrial areas in Selangor and Kuala Lumpur.

Methodology: A total of 207 respondents involved in this study, 87 were children from urban area, 67 children from industrial area and another 53 from rural area. The selection of respondents was based on purposive sampling method, only asthmatic children who had been diagnosed by a physician were involved. Health records of
the children were obtained from the school administration. Respondents were children from Standard 2 to Standard 5, with informed consent from their parents. A modified ISAAC Questionnaire translated into the Malay language was administered and completed by parents. Peak expiratory flow (PEF) readings were measured using a peak flow meter mini weight model AFS CE 0120 on Monday, Wednesday and Friday before and after school. Urine samples were collected to measure the oxidative stress (8-OHdG) levels among respondents. Continuous ambient air pollutants (PM$_{10}$, CO, SO$_2$, and NO$_2$) data monitored by Alam Sekitar Malaysia were obtained from the Department of Environment. The 8 hours indoor air pollutants (PM$_{10}$, PM$_{2.5}$, CO, SO$_2$ and NO$_2$) were measured by using Giliair air sampling pump. The standard NIOSH methods were referred to in the measurement.

Results: The prevalence of asthma from students’ health record was higher in urban and industrial children than those of the rural children. In 2008, the annual mean PM$_{10}$ concentrations were slightly higher than the Malaysian Ambient Air Quality Guideline (MAAQG) in the industrial area (64.922µg/m3) and the PM$_{10}$ for urban and rural area were 48.687µg/m3 and 23.464µg/m3 respectively. Sulfur dioxide was significantly higher in the industrial area with a mean of 0.003ppm compared to the urban area of 0.002ppm, whereas, higher levels of CO were recorded in urban area (1.305ppm), followed by industrial area (0.873ppm) and rural area (0.680ppm). Similarly, higher levels of NO$_2$ were recorded in urban area (0.029ppm), followed by industrial area (0.021ppm) and rural area (0.010ppm). For household indoor air quality, there were significant differences in the PM$_{10}$, PM$_{2.5}$ and CO concentrations whereby PM$_{10}$ were the highest among industrial houses with a mean of 0.0071µg/m3 followed by the urban with 0.0042µg/m3 and the rural area with
0.0012µg/m^3. Indoor carbon monoxide was highest in the urban houses with a mean concentration of 0.204ppm. There was an association between the prevalence of respiratory and allergy symptoms with locations. Urban children have a higher count of symptoms for difficulty in breathing, (χ^2=9.34, p<0.001) chest tightness, (χ^2=9.66, p<0.05) and wheezing (χ^2=12.01, p<0.05). Allergy symptoms were also higher among urban children such as skin rashes, nasal symptoms and itchy with watery eyes and nose. Results showed a significant influence of days within week and PEF reading before and after school. The oxidative stress (8-OHdG) was high among the urban children with a mean (5.072ng/mg creatinine) followed by industrial children (3.587ng/mg creatinine) and rural children (3.090ng/mg creatinine). The severity of asthma among respondents was classified according to PEF variability, day and night symptoms and respiratory scores. Most of the children had mild asthma and moderate asthma. From the logistic regression, fathers’ education, PEF variability and allergy to pollen significantly influenced the frequency of asthmatic attack among respondents. Factors which significantly influenced the asthma severity were PM_{10} and allergy to pollen.

Conclusion: The air pollutants were higher in the urban and industrial area. This study shows that the asthmatic children who live in urban and industrial areas have greater risk of developing severe asthma due to exposure to air pollutants.

Keywords: asthma, school children, air pollutants, peak expiratory flow, 8-OHdG and severity.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENCERARAN UDARA AMBIEN DAN KAITANNYA DENGAN KESIHATAN RESPIRATORI KANAK-KANAK ASMA SEKOLAH RENDAH DI KAWASAN BANDAR, LUAR BANDAR DAN INDUSTRI TEPILIH DI SELANGOR DAN KUALA LUMPUR

Oleh

JUNAIDAH ZAKARIA

Desember 2010

Pengerusi: Prof.Zailina binti Hashim PhD

Fakulti: Fakulti Perubatan dan Sains Kesihatan

Objektif: Objektif utama kajian adalah untuk mengkaji perkaitan di antara pendedahan pencemaran udara dengan kesihatan respiratori kanak-kanak sekolah rendah yang menghidap asma yang tinggal di kawasan bandar, luar bandar dan industri di Selangor dan Kuala Lumpur.

Metodologi: Seramai 207 responden terlibat di dalam kajian ini di mana 87 adalah dari kawasan bandar, 67 dari kawasan perindustrian dan seramai 53 dari kawasan

v

Hasil Kajian: Kes asma yang diperolehi dari buku rekod kesihatan pelajar menunjukkan kadar prevalens yang lebih tinggi di kalangan kanak-kanak yang tinggal di kawasan bandar dan di kawasan industri berbanding kawasan luar bandar. Paras kepekatannya tahunan PM$_{10}$ di kawasan industri bagi tahun 2008 telah melebihi panduan yang ditetapkan oleh Malaysian Ambient Air Quality Quality Guideline (MAAQG) iaitu sebanyak (64.922µg/m3) diikuti kawasan bandar 48.687µg/m3 dan di kawasan luar bandar sebanyak 23.464µg/m3. Sulfur dioksida mencatatkan bacaan tertinggi di kawasan industri iaitu sebanyak 0.003ppm diikuti 0.002ppm di kawasan bandar. Bagi bahan pencemar CO, bacaan tertinggi direkodkan di kawasan bandar...
dengan purata sebanyak (1.305ppm), diikuti (0.873ppm) di kawasan industri dan bacaan terendah adalah di kawasan luar bandar iaitu sebanyak (0.680ppm). Kepekatan bahan pencemar NO\textsubscript{2} juga dicatatkan tertinggi di kawasan bandar iaitu sebanyak (0.029ppm), diikuti (0.021ppm) di kawasan industri, dan (0.010ppm) di kawasan luar bandar. Terdapat perbezaan yang signifikan pada paras kepekatan bahan pencemar di dalam rumah bagi PM\textsubscript{10}, PM\textsubscript{2.5} dan CO bagi ketiga-tiga kawasan. PM\textsubscript{10} adalah tertinggi di kawasan industri 0.0071 µg/m3 diikuti rumah di kawasan bandar sebanyak 0.0042µg/m3 dan 0.0012µg/m3 di kawasan luar bandar. Bahan pencemar CO adalah tinggi bagi rumah di kawasan bandar, dengan mencatatkan bacaan purata sebanyak 0.204ppm. Terdapat hubungan yang signifikan antara prevalens simptom respiratori dan alahan di kalangan kanak-kanak dengan lokasi kajian. Kanak-kanak di kawasan bandar menunjukkan bilangan simptom tertinggi berbanding kanak-kanak di dua lagi kawasan kajian bagi sesak nafas ($\chi^2=9.34,p<0.001$), ketat dada ($\chi^2=9.66,p<0.05$), dan dada berbunyi ($\chi^2=12.01,p<0.05$). Simptom hidung, ruam dan mata gatal dan berair juga mencatatkan prevalens tertinggi di kalangan kanak-kanak bandar. Terdapat pengaruh yang signifikan bagi faktor hari dan bacaan PEF sebelum mula waktu persekolahan dan selepas waktu persekolahan. Paras 8-OHdG adalah tinggi di kalangan kanak-kanak bandar (5.072ng/mg keratinin) diikuti industri (3.587ng/ mg keratinin) dan luar bandar (3.090ng/mg keratinin). Tahap kejejasan asma di kalangan responden diklasifikasi menggunakan maklumat dari bacaan PEF variability, simptom malam dan siang dan juga jumlah simptom respiratori yang dialami oleh responden. Kebanyakan kanak-kanak tergolong di dalam kelas asma sederhana dan asma ringan. Daripada analisis regresi yang dijalankan, faktor yang mempengaruhi bilangan serangan asma di kalangan responden adalah tahap pendidikan bapa, PEF variability dan alahan kepada debunga.
Manakala faktor yang mempengaruhi kejejasan asma di kalangan responden adalah PM$_{10}$ dan alahan kepada debunga.

Kesimpulan: Kepekatan bahan pencemar udara adalah lebih tinggi di kawasan bandar dan industri. Kajian ini menunjukkan bahawa kanak-kanak yang menghidap asma dan tinggal di kawasan bandar dan industri adalah berisiko tinggi untuk mendapat kondisi asma yang serius disebabkan pendedahan kepada bahan pencemar udara.

Kata Kunci: asma, kanak-kanak sekolah, bahan pencemar udara, peak expiratory flow, 8-OHdG dan kejejasan.
ACKNOWLEDGEMENTS

Alhamdulillah, I express my first and foremost gratitude to the most Merciful Allah S.W.T for giving me knowledge, strength and blessing to complete this study. This project is the accumulation of years of hard work, planning and effort. It is a pleasure to thank those who made this thesis possible. I would like to express my deep and sincere gratitude to my dedicated supervisor, Professor Dr. Zailina Hashim. Her wide knowledge have been of great value for me. Her understanding, encouraging and personal guidance have provided a good basis for the present thesis. Thank you so much for being such a good example, putting up my spirit, contribution and participations into this research. I wish to express my warm and sincere thanks to the committee members Prof. Dato’ Dr. Lye Munn Sann and Associate Prof. Dr. Zuraini Ahmad for the help and support.

This research would not be successful if there were no contributions of the schools involved. I owe my deepest gratitude to all the school principals and teachers involved in this research: SK Sri Petaling, SK Sri Tasik, SK Bandar Tun Razak 1,2, SK Morib, SK Beranang, SK Sungai Buaya, SK Pelabuhan Kelang and SK Pelabuhan Utara. Furthermore, my deepest appreciation goes to all the children and parents’ whose participated in this study. Thank you so much for the interest and cooperation given for this research.

I would like to thank all the lecturers and staff at Department of Community Health, Pn. Norijah, Pn. Hazleen Salleh, Pn. Adriana Naim, Pn. Ezza and also staff from Pathology Laboratory, Pn. Safarina Mohd Ismuin and En. Khairul Ehsan Zazeli. Thank you so much for the help and guidance while conducting the laboratory work. I am indebted to my many of my colleagues to support me, Nurul Izzah Abd. Samad, Khairul Nizam Mohd Isa, Noor Ayu Anida Nordin, Nur Husna, Norazura Ismail, Siti Zalikha Sidek, Nur Faizah Sa’ari, Nasimah Nasir and Rumaizah Ruslan, thank you so much for everything. No words can really express my feeling of bleseness to have all of you around me throughout the completion of this thesis.

ix
I owe my loving thanks to my beloved mother; Pn. Islahiah Mohd Din, my sisters; Jamilah Zakaria, Sajiah Zakaria, Sukhriah Zakaria as well as my brothers; Zulkifli Zakaria, and Muhammad Fauzi Zakaria who continuously supported and encouraged me with prayers and moral support throughout the progress of this project. Thousands of thanks for the love and care and being truly understanding and supportive. Without them this project would never have been a success. Thank You.
I certify that a Thesis Examination Committee has met on 17 December 2010 to conduct the final examination of Junaidah binti Zakaria on her thesis entitled “Ambient Air Pollution and its Association with the Respiratory Health of Asthmatic Primary School Children in Selected Urban, Rural and Industrial Areas in Selangor and Kuala Lumpur” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Dr. Hejar Abd. Rahman, PhD
Associate Professor
Faculty of Medicine and Health Sciences
University Putra Malaysia
(Chairman)

Dr. Latiffah A. Latiff, MD,PhD
Associate Professor
Faculty of Medicine and Health Sciences
University Putra Malaysia
(Internal Examiner)

Dr. Haliza Mohd. Riji, PhD
Associate Professor
Faculty of Medicine and Health Sciences
University Putra Malaysia
(Internal Examiner)

Dr. Zaleha Md.Isa, PhD
Associate Professor
Medical Faculty
Universiti Kebangsaan Malaysia
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
University Putra Malaysia

Date: 19 April 2011
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Zailina binti Hashim, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Dato’ Dr. Lye Munn Sann, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Zuraini binti Ahmad, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any degree at Universiti Putra Malaysia or at any other institution.

JUNAIDAH BT. ZAKARIA

Date: 17 December 2010
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Air Pollution 1
1.2 Problem Statement 8
1.3 Study Justification 11
1.4 Conceptual Framework 14
1.5 Study Objective 17
1.6 Study Hypotheses 18
1.7 Definition of Variables 19

2 LITERATURE REVIEW

2.1 Asthma in Children 24
2.2 Pathology and Pathophysiology of Asthma 28
2.3 Classification of Asthma 29
2.4 Human Respiratory System 30
2.5 Measurement of Respiratory Function 32
2.6 Ambient Air Pollution 35
2.7 Sulfur Dioxide 37
2.8 Nitrogen Dioxide 37
2.9 Particulate Matter 38
2.10 Carbon Monoxide 40
2.11 Biomarkers 41
2.12 Mechanism of Lung Inflammation and Oxidative Stress 42
2.13 Inflammation of Airway Diseases 46
2.14 Oxidative Stress in Asthmatic Children 49
2.15 8-Hydroxy-2-Deoxyguanosine (8-OHdG) as Biomarkers In Asthmatic Patients 51

3 METHODOLOGY

3.1 Study Design 53
3.2 Study Location 53
3.3 Study Population 56
3.4 Study Sample 56
3.5 Sampling .. 57
 3.5.1 Sampling Location 57
 3.5.2 Sampling Frame 62
3.5.3 Inclusion Criteria

3.6 Sample Size

3.7 Instruments

3.7.1 Student’s Health Record

3.7.2 Questionnaire

3.7.3 Peak Expiratory Flow Meter

3.7.4 Urine Sampling

3.8 Sample Preparation

3.8.1 Principle of the Assay

3.8.2 Assay Procedure Summary

3.8.3 Air Sampling Pump for PM$_{10}$ and PM$_{2.5}$

3.8.4 Air Sampling Pump for SO$_2$ and NO$_2$

3.8.5 Measurement of Nitrogen Dioxide

3.8.7 Measurement of Carbon Monoxide

3.8.7 Ambient Air Data

3.9 Statistical Analysis

3.10 Study Ethics

4 RESULTS

4.1 Respondents Information Background

4.2 Parents’ Demographic and Socio-economic Background

4.3 Prevalence of Asthma

4.4 Concentration of Ambient Air Pollutants

4.5 Concentration of Indoor Air Pollutants

4.6 Association of Respiratory and Allergy Symptoms among Respondents

4.7 Peak Expiratory Flow Reading among Respondents

4.8 Concentration of Oxidative Stress

4.9 Classification of Asthma among Respondents

4.10 Associated Risk Factors in Asthma

5 DISCUSSION, CONCLUSION AND RECOMMENDATION

5.1 Introduction

5.2 Respondents Information Background

5.3 Prevalence of Asthma

5.4 Comparison of Ambient Air Pollution

5.5 Comparison of Household Indoor Air Pollutants

5.6 Respiratory and Allergy Symptoms

5.7 Peak Expiratory Flow

5.8 Concentration of Oxidative Stress

5.9 Classification of the Severity of Asthma

5.10 Influencing Predictors Associated with Frequency of Asthmatic Attacks

5.12 Influencing Predictors Associated with Severity of Asthma

5.13 Study Limitations

5.14 Conclusion

5.15 Recommendation
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCES</td>
<td>156</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>171</td>
</tr>
<tr>
<td>BIODATA OF STUDENT</td>
<td>217</td>
</tr>
<tr>
<td>LIST OF PUBLICATION</td>
<td>220</td>
</tr>
</tbody>
</table>