UNIVERSITI PUTRA MALAYSIA

EFFECTS OF LYCOPENE AND RED PALM OIL ON OXIDATIVE STRESS IN STREPTOZOTOCIN-INDUCED DIABETIC RATS

HANIEH JAFARI

FPSK(m) 2010 28
EFFECTS OF LYCOPENE AND RED PALM OIL ON OXIDATIVE STRESS IN STREPTOZOTOCIN-INDUCED DIABETIC RATS

HANIEH JAFARI

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA
2010
EFFECTS OF LYCOPENE AND RED PALM OIL ON OXIDATIVE STRESS IN STREPTOZOTOIN-INDUCED DIABETIC RATS

By
HANIEH JAFARI

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in
Fulfilment of the Requirements for the Degree of Master of Science

December 2010
DEDICATION

This thesis is dedicated to
My lovely husband and parents who supported me
all these years
The purpose of the current study was to determine lycopene and red palm oil effects on oxidative stress in streptozotocin-induced diabetic rats. The studied parameters for oxidative stress are fasting blood glucose level, oxidative stress biomarkers (superoxide dismutase and glutathion peroxidase), lipid profiles (low-density lipoprotein cholesterol, triglycerides, total cholesterol and high-density lipoprotein cholesterol) and body weight. For induction of diabetes, the rats were injected with 55 mg/kg body weight of STZ (Streptozotocin) dissolved in 0.05 M citrate buffer (pH4.5). Lycopene (10 and 20 mg/kg bw) and red palm oil (10 and 20 mg/kg bw) were given to the diabetic rats by force feeding for six weeks supplementation. The results indicated that there was significant difference in fasting blood glucose level after 6 weeks of lycopene (10 and 20 mg/kg
bw) and red palm oil (10 and 20 mg/kg bw) administration as compared to diabetic control group. The supplementation with red palm oil (10 and 20 mg/kg bw) significantly (p < 0.05) reduced the plasma low-density lipoprotein cholesterol, triglycerides and total cholesterol of diabetic rats as compared to control diabetic (untreated and super olein oil) animals. The administration with red palm oil 10 and 20 mg/kg bw, has increased the level of HDL-C in treated groups as compared to control diabetic rats. However, there were no significant changes in lipid profiles (low-density lipoprotein cholesterol, triglycerides, total cholesterol and high-density lipoprotein cholesterol) level in diabetic treated groups with lycopene (10 and 20 mg/kg bw) after six weeks supplementation. Superoxide dismutase and glutathion peroxidase activities were enhanced in diabetic treated groups with lycopene (10 and 20 mg/kg bw) and red palm oil (10 and 20 mg/kg bw) compared to that in control diabetic rats. The supplementation of lycopene (10 and 20 mg/kg bw) and red palm oil (10 and 20 mg/kg bw) significantly prevented body weight loss starting from 3rd week of lycopene and red palm oil administration in treated animals. These findings suggest that lycopene may have considerable therapeutic potential as an antioxidant but there was no significant lipid lowering effect in Type 2 diabetes mellitus.

These results also showed that red palm oil (RPO) lowered the blood glucose level and improved dyslipidemia. Level of oxidative stress markers were also reduced with administration of RPO. These findings indicate antidiabetic capability of red palm oil.
Tujuan kajian ini adalah untuk menentukan kesan likopen dan minyak kelapa sawit ke atas stres oksidatif pada tikus teraruh steptozotocin. Parameter yang dikaji dalam kajian ini adalah paras gula dalam darah, enzim stres oksidatif (superoxide dismutase dan glutathion peroksidasa), profil lipid (jumlah kolesterol, trigliserida, HDL-kolesterol, LDL-kolesterol) dan berat badan. Bagi pengaruh diabetes ke atas tikus, 55 mg/ kg berat badan streptozotocin (STZ) telah dilarutkan dalam 0.05 M bufer citrate (pH4.5) dan disuntik pada tikus. Likopen (10 and 20 mg/kg berat badan) dan minyak kelapa sawit (10 and 20 mg/kg berat badan) diberikan pada tikus diabetes teraruh streptozotocin secara paksa selama 6 minggu rawatan suplemen.

Hasil kajian menunjukkan terdapat perbezaan yang signifikan dalam paras gula dalam
darah tikus teraruh diabetes selepas 6 minggu pengambilan likopen dan minyak kelapa sawit bagi kedua-dua dos apabila dibandingkan dengan kumpulan kawalan. Rawatan suplemen dengan minyak kelapa sawit (10 and 20 mg/kg berat badan) menurunkan dengan signifikan (p<0.05) plasma LDL-kolesterol, trigliserida dan jumlah kolesterol tikus teraruh diabetes apabila dibandingkan dengan kumpulan kawalan diabetes. Pengambilan minyak kelapa sawit (10 and 20 mg/kg berat badan) meningkatkan paras HDL-kolesterol dalam kumpulan rawatan suplemen jika dibandingkan dengan kumpulan kawalan diabetes. Walaubagaimanapun, tiada perubahan yang signifikan dalam profil lipid (jumlah kolesterol, trigliserida, HDL-kolesterol, LDL-kolesterol) tikus yang diberikan suplemen likopen (10 and 20 mg/kg berat badan) selepas 6 minggu tempoh rawatan suplemen. Aktiviti superoxide dismutase dan glutathion peroksida adalah lebih baik dalam kumpulan diabetes yang diberi suplemen likopen dan minyak kelapa sawit pada kedua-dua dos apabila dibandingkan dengan kumpulan kawalan diabetes. Pengambilan suplemen likopen dan minyak kelapa sawit pada kedua-dua dos secara signifikan menghalang penurunan berat badan bermula pada minggu ketiga rawatan suplemen.

ACKNOWLEDGEMENTS

I wish to express my profound gratitude and thanks to my supervisor Prof Dr. Asmah Rahmat For her guidance, enthusiastic supervision encouragement and help throughout the duration of this research. Without my supervisor, this work has not been possible.

Also my heartiest thanks to my co-supervisor, Dr. Huzwah Khazaai for her timely advice, guidance and help throughout the duration of this research.

My deep appreciation and gratitude to dean of faculty of Medicine and Health Science for numerous discussions and continued assistant throughout this research.

Finally my gratitude’s to my lovely husband (Morteza) and my parents who are my inspiration, supported, and belief whatever I do. I would like to express my appreciation to the laboratory staff (Mr. Syed Hasbullah, Mrs. Rossalyna, Mrs. Safarina, Mr. Ehsan, Mr. Norazmie and Mr. Andy) and to everyone who helped me directly or indirectly throughout this project.
I certify that an Examination Committee met onto conduct the final examination of Hanieh Jafari on her Master degree thesis entitled “Effects of lycopene and red palm oil on oxidative stress in streptozotocin-induced diabetic rats” in accordance with “Universiti Pertanian Malaysia” (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Patimah binti Ismail, PhD
Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Chairman)

Rokiah bt Mohd Yusof, PhD
Associate Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Internal Examiner)

Fauziah bt Othman, PhD
Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Internal Examiner)

Yasmin Anum Mohd Yusof, PhD
Associate Professor
Faculty of Medicine and Health Science
Universiti Technology Malaysia
(External Examiner)

HASNAH MOHD. GHAZALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Asmah Rahmat
Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Chairman)

Huzwah Khazaai
Lecturer
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Member)

Bujang Kim Huat, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 February 2011
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at other institutions.

HANIEH JAFARI
Date: 29 December 2010
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRAK v
ACKNOWLEDGEMENTS vi
APPROVAL viii
DECLARATION x
LIST OF TABLES xiv
LIST OF FIGURES xvi
LIST OF ABBREVIATIONS xvii

CHAPTER

1 INTRODUCTION
1.1 Background of Study 1
1.2 Statement of the Problem 6
1.3 Objectives 10
 1.3.1 General Objective 10
 1.3.2 Specific Objectives 10

2 LITERATURE REVIEW
2.1 Diabetes Mellitus 11
 2.1.1 Classification 11
 2.1.2 Pathophysiology of Type 2 Diabetes 12
 2.1.3 Diagnosis 14
 2.1.4 Complications 14
 2.1.5 Prevalence of Diabetes in the World 16
 2.1.6 Diabetes in Malaysia and it’s Prevalence 18
 2.1.7 Risk factors of Diabetes and its Complications 19
 2.1.8 Lipid Profiles in Diabetes 21
2.2 Oxidative Stress 22
 2.2.1 Free radical 24
 2.2.2 ROS and Oxidative Stress 24
 2.2.3 Oxidative Stress and Diabetes 25
 2.2.4 Indicators of Oxidative Stress 27
 2.2.5 Glutathione Peroxidase (GPx) 27
 2.2.6 Superoxide Dismutase (SOD) 28
 2.2.7 Antioxidant 30
2.3 Lycopene 31
2.3.1 Sources of Lycopene and it’s Absorption

2.3.2 Role of Lycopene in Human Health

2.3.3 Lycopene and Antioxidant Capacity

2.3.4 Lycopene and Oxidative Stress

2.3.5 Effect of Lycopene on LDL Oxidation

2.3.6 Effect of Lycopene on DNA Oxidation

2.3.7 Lycopene and Oxidative Stress in Cancer and Heart Disease (CHD)

2.3.8 Lycopene and Diabetes

2.4 Red palm oil

2.4.1 Red palm oil and Oxidation

2.4.2 Protective effect of Red palm oil in Diseases related to Oxidative Stress

2.4.3 Red palm oil and Lipid Profiles

2.4.4 Red palm oil, Vitamin A

2.4.5 Red palm oil, Vitamin E

2.4.6 Palm oil and Cancer Prevention

3 MATERIALS AND METHODS

3.1 Chemicals

3.2 Animal Study

3.3 Induction of Diabetes

3.4 Lycopene and Red palm oil Supplementation

3.5 Blood Collection

3.6 Biochemical Analysis

3.6.1 Determination of Plasma Lipid Profiles

3.6.2 Determination of Superoxide Dismutase Activity (SOD)

3.6.3 Determination of Glutathione Peroxidase Activity (GPx)

3.6.4 Determination of Glucose level

3.7 Statistical Analysis

4 RESULTS

4.1 Induction of Experimental Diabetes Rats

4.2 Effects of Lycopene and Red palm oil on Body Weight

4.3 Effects of Lycopene and Red palm oil on Glucose level

4.4 Effects of Lycopene and Red palm oil on Lipid Profiles

4.4.1 Low-Density Lipoprotein Cholesterol

4.4.2 Triglycerides

4.4.3 Total Cholesterol
4.4.4 High-Density Lipoprotein Cholesterol
4.5 Effects of Lycopene and Red palm oil on Superoxide Dismutase (SOD)
4.6 Effects of Lycopene and Red palm oil on Glutathione Peroxidase (GPx)

5 DISCUSSION
5.1 Induction of Experimental Diabetes Rats
5.2 Effects of Lycopene and Red palm oil on Body Weight
5.3 Effects of Lycopene and Red palm oil on Glucose level
5.4 Effects of Lycopene and Red palm oil on Lipid Profiles
5.5 Effects of Lycopene and Red palm oil on SOD and GPx levels

6 CONCLUSION AND RECOMMENDATIONS
6.1 Conclusion
6.2 Recommendations

REFERENCES
APPENDICES
BIODATA OF STUDENT