UNIVERSITI PUTRA MALAYSIA

ISOLATION AND EXPRESSION ANALYSIS OF ETHYLENE RECEPTOR GENE FROM *ONCIDIUM* GOWER RAMSEY FLOWER

UMIKALSUM MOHAMED BAHARI

IB 2009 20
ISOLATION AND EXPRESSION ANALYSIS OF ETHYLENE RECEPTOR GENE FROM ONCIDIUM GOWER RAMSEY FLOWER

By

UMIKALSUM MOHAMED BAHARI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

December 2009
The process of flower senescence is influenced by the plant hormone, ethylene. In Arabidopsis, ethylene perception is controlled by a family of five genes, including ETHYLENE RESPONSE 1 (ETR1), ETHYLENE RESPONSE SENSOR 1 (ERS1), ETHYLENE RESPONSE 2 (ETR2), ETHYLENE RESPONSE SENSOR 2 (ERS2) AND ETHYLENE-INSENSITIVE 4 (EIN4). They fall into two subfamilies based on their sequence similarities. In flower, it has been reported that similar set of genes are also involved. This study was carried out to isolate the gene that is involved in ethylene signaling from Oncidium Gower Ramsey flower. Total RNA was extracted from self-pollinated Oncidium Gower Ramsey flowers followed with reverse transcriptase-polymerase chain reaction (RT-PCR) using two degenerate primer pairs (F1/R1 and F2/R2). These primers were designed based on the conserved regions of ethylene receptor genes of various plant species. Fragments of the expected size were yielded and sequenced. DNA sequences analysis showed a very high homology
to the full length ethylene receptor gene, *ETHYLENE RECEPTOR 2 (ER2)* (Genebank AF276234) of *Oncidium* Gower Ramsey. From here, specific primers (F3/R3) were designed for 5’ and 3’ ends of the open reading frame (ORF) region of the *ER2* gene in order to clone a similar full length gene. The purified and sequenced PCR fragment had 98% DNA sequence similarity to the *ER2* gene. However, the newly amplified fragment was only 1595bp, encoded for 422 amino acids as compared to the 2389bp (631 amino acids) of the full length *ER2*. Sequence alignment of the two genes indicated two truncated regions between nucleotide number 1015 to 1643 (628bp) and 2013 to 2027 (14bp). These results demonstrated that we have cloned an ethylene gene named *ER2*, which encodes for a protein that has a missing region in the histidine kinase domain as compared to the sequence of ER protein for a similar orchid hybrid. In addition, expression of the isolated gene was detected by real-time RT-PCR at a very low level in the tested flower tissues, as well as in roots. Our results suggest that *ER2* may be involved in the development of different plant tissues.
Abstrak tesis yang dikemukakan kepada Senat Universiti Puta Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PEMENCILAN DAN ANALISA PENGEKSPRESAN GEN RESEPTOR ETILINA DARIPADA BUNGA ONCIDIUM GOWER RAMSEY

Oleh

UMIKALSUM MOHAMED BAHARI

Disember 2009

Pengerusi : Faridah Qamaruz Zaman, PhD

Institut : Institut Biosains

Proses kelayuan bunga adalah dipengaruhi oleh hormon tumbuhan, etilena. Persepsi etilena adalah dikawal oleh famili yang terdiri daripada lima gen, termasuk ‘ETHYLENE RESPONSE 1’ (ETR1), ‘ETHYLENE RESPONSE SENSOR 1’ (ERS1), ‘ETHYLENE RESPONSE 2’ (ETR2), ‘ETHYLENE RESPONSE SENSOR 2’ (ERS2) dan ‘ETHYLENE-INSENSITIVE 4’ (EIN4) dalam Arabidopsis. Kesemua gen ini adalah tergolong dalam dua subfamili berdasarkan kepada persamaan jujukan. Dilaporkan bahawa set gen yang sama juga terlibat dalam pokok bunga. Kajian ini adalah untuk memencilkan gen yang terlibat dengan signal etilena dalam bunga Oncidium Gower Ramsey. RNA jumlah telah diekstrak daripada bunga Oncidium Gower Ramsey yang telah didebungakan. Tindak balas berbalik polimerase berantai (RT-PCR) dijalankan menggunakan dua pasang pencetus (F1/R1 dan F2/R2) yang direka berdasarkan kawasan terabadi pada gen reseptor etilena pelbagai spesies
ACKNOWLEDGEMENTS

I would like to thank my sincere gratitude to my supervisor Dr. Faridah Qamaruz Zaman, for the continuous support of my MSc. study and research, for her patience, motivation, enthusiasm, and understanding. Her guidance helped me in all the time of research and writing of this thesis. Special thanks to Dr. Umi Kalsom Abu Bakar from MARDI for her invaluable advice, encouragement, and immense knowledge. My sincere thanks also goes to Dr. Rozi Mohamed for providing the insightful comments and supervision. Their supervision are very much appreciated.

The work in this thesis was carried out in the Biology Molecular Lab II, Biotechnology Center, MARDI. I wish to express my warm and sincere thanks to all members in the laboratory especially to Norizwati Amdan (Anne) and Kak Nora who have assisted in the project since its beginnings, in one way or another.

Finally, this thesis is dedicated to my husband Roslan Azman who encouraged me constantly. Also to my son Faris Imran and my new born baby Arif Fakhri for giving me happiness and joy. Last but not least, I would like to thank to my beloved mother Hjh. Sharaieyah Hj. Mohd. Desa whose love is boundless and for my father Hj. Mohamed Bahari Hj. Mohd. Khadiry who is my role model. Without their persistent support and encouragement, this thesis would never become a reality.
I certify that an Examination Committee has meet on 7th December 2009 to conduct the final examination of Umikalsum Mohamed Bahari on her Master of Science thesis entitled “Isolation and Expression Analysis of Ethylene Receptor Gene from *Oncidium* Gower Ramsey Flowers” in accordance with Universiti Pertanian Malaysia (higher degree) Act 1980 and university Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the degree of Master of Science.

Members of the Examination Committee were as follows:

Tan Soon Guan, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Maziah Mahmood, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Parameswari Namasivayam, PhD
Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Choong Chee Yen, PhD
Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Kebangsaan Malaysia
(External Examiner)
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows;

Faridah Qamaruz Zaman, PhD
Associate Professor
Institute of Bioscience
Universiti Putra Malaysia
(Chairman)

Rozi Mohamed, PhD
Lecturer
Faculty of Forestry
Universiti Putra Malaysia
(Member)

Umi Kalsom Abu Bakar, PhD
Director
Biotechnology Center
Malaysia Agricultural Research and Development Institute (MARDI)
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 15 July 2010

viii
DECLARATION

I hereby declare that the thesis is based on my original work except for the quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

UMIKALSUM MOHAMED BAHARI

Date: 3 May 2010
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION FORM</td>
<td>ix</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1

2 LITERATURE REVIEW

2.1 Ethylene 6
 2.1.1 Ethylene Perception 7
 2.1.2 Ethylene Signal Transduction 9
 2.1.3 Ethylene Biosynthesis 11
2.2 Gene Expression Assay 11
2.3 Senescence 14
 2.3.1 Senescence of Flower 14
 2.3.2 Pollination 15
2.4 Plant Hormones 16
2.5 *Oncidium* Orchid 17

3 MATERIALS AND METHODS

3.1 Apparatus Preparation 19
3.2 Plant Materials 19
3.3 Total RNA Extraction 20
3.4 cDNA Library Screening 21
 3.4.1 Host Bacteria Preparation 22
 3.4.2 Plating 23
 3.4.3 Plaque Lift 23
 3.4.4 Hybridization Analysis 26
 3.4.5 Secondary Screening 27
 3.4.6 *In vivo* Excision 27
3.5 Primer Design 27
 3.5.1 Specific Primer 27
 3.5.2 Degenerate Primer 28
3.6 Reverse Transcription – Polymerase Chain Reaction (RT-PCR) Cloning 31
 3.6.1 DNA Sequence Analysis 33
3.7 Northern Blotting 33
 3.7.1 Agarose/Formaldehyde Gel Electrophoresis 33
3.7.2 Transfer of RNA from Gel to Membrane 34
3.7.3 Hybridisation Analysis 35
3.8 Real-Time Reverse Transcription (RT) PCR 37
3.8.1 Total RNA and First-Strand cDNA Analysis 37
3.8.2 Primers Design for Real-Time Analysis 38
3.8.3 Generating The Standard Curve 38
3.8.4 Real-Time SYBR Green RT-PCR Assay 39
3.8.5 Quantification of Transcript Levels by Real-Time PCR 40

4 RESULTS
4.1 Flower Post-Pollination 41
4.2 Total RNA 41
4.3 Library Screening 45
4.4 Reverse Transcriptase-Polymerase Chain Reaction 45
4.5 Gene Expression 52
4.5.1 Northern Blotting 52
4.5.2 Real-Time RT-PCR 54
 4.5.2.1 Relative Standard Curve 54
 4.5.2.2 Relative Quantification of ER25 Expression using Comparative C_{t} \left(2^{-\Delta\Delta C_{t}}\right) Method 55
4.6 Comparison of the ER25 with Other Plants 57

5 DISCUSSION 62
5.1 Pollination Induce Senescence 62
5.2 Total RNA 63
5.3 Gene Isolation 64
 5.3.1 Orchid Viral Genes 64
 5.3.2 Ethylene Receptor Gene 65
5.4 Gene Expression Level 67
5.5 Dendrogram Analysis 69

6 CONCLUSION 71

REFERENCES 73
APPENDICES 84
BIODATA OF THE AUTHOR 96
LIST OF PUBLICATION 97