EFFECTS OF MITRAGYNINE ON LOCOMOTOR AND ANXIETY IN RATS SUBJECTED TO RESTRAINT STRESS

NURUL RAUDZAH BINTI ADIB RIDZUAN

FPSK(m) 2010 14
EFFECTS OF MITRAGYNINE ON LOCOMOTOR AND ANXIETY IN RATS SUBJECTED TO RESTRAINT STRESS

By

NURUL RAUDZAH BINTI ADIB RIDZUAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Masters of Science

October 2010
DEDICATION

~to beloved ZZ and little ZN junior~
who always inspire me and make it all meaningful

- NRAR
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Masters of Science

EFFECTS OF MITRAGYNINE ON LOCOMOTOR AND ANXIETY IN RATS SUBJECTED TO RESTRAINT STRESS

By

NURUL RAUDZAH BINTI ADIB RIDZUAN

October 2010

Chairman: Mohd. Taufik Hidayat Baharuldin, PhD

Faculty: Faculty of Medicine and Health Sciences

Mitragyna speciosa is an indigenous tree found in Southeast Asia particularly in Thailand and Malaysia. It is popularly known as ‘kratom’ in Thailand and ‘ketum’ in Malaysia. The medicinal properties of this plant were due to its opium-like effects and cocaine-like stimulant ability in combating fatigue and as hard work tolerance. The major alkaloid from this plant, mitragynine was extracted and isolated by solvent systems. Standard spectroscopic analysis was performed to identify the compound. Due to its potential properties as psychostimulant ability and anti-anxiety, this study was designed to determine the effects of mitragynine on locomotor activities and anxiety level in eustress and stress-induced rats. An effect of mitragynine on the corticosterone level was also determined. Locomotor and grooming activity in open-field test (OFT) and anxiety study in elevated plus-maze (EPM) were performed for the behavioral profiles. A hundred and sixty male Sprague-Dawley rats were used in the study and
divided into two groups which were eustress and stress-induced rats. Mitragynine of different dosages (1.0, 5.0, 10.0 and 30.0 mg/kg) were administered intraperitoneally to each rat. Stress-induced rats were restrained for 2 hours in the restrainer before the behavioral activities were conducted. The findings showed that locomotor activity statistically increased (P<0.05) in 5.0 and 30.0 mg/kg mitragynine treated rats compared to 1.0 mg/kg mitragynine in non-stressed rats. Locomotor activity also increased in stressed-rats in all doses of mitragynine, however the results were not statistically significant. Grooming activity increased significantly (P<0.05) in stressed rats treated with 1.0, 5.0, 10.0 and 30.0 mg/kg mitragynine compared to control group. In non-stressed rats, grooming activity also increased in all doses of mitragynine but the results were not statistically significant. In anxiety study, three parameters were performed on each rat including time spent in open arms, open arm entries and time spent in central platform. Thirty (30.0) mg/kg mitragynine increased the time spent in open arms and open arm entries in non-stress and stress-rats. However, 30.0 mg/kg mitragynine decreased the time spent in central platform in non-stress and stress groups. Time spent in central platform only increased in non-stress rats treated with 5.0 and 10.0 mg/kg mitragynine. Corticosterone levels in stress-rats treated with all doses of mitragynine increased significantly (P<0.05) compared to control group. Higher dosages of mitragynine are able to induce behavioural changes by increasing the locomotor, grooming activity and anxiety parameters. Thus, the study showed that mitragynine produced sensitivity towards the locomotor, grooming and anxiety by increasing the parameters and is highly correlated with corticosterone levels in stressed rats. In conclusion, mitragynine is able to exert the possible psychostimulant and anxiolytic
properties in non-stressed and stressed rats through the possible mechanism of action of mitragynine in rats.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Sarjana Sains

KESAN MITRAGININ TERHADAP LOKOMOTOR DAN KERESAHAN KEPADA TIKUS YANG DIDEDAHKAN STRES KURUNGAN

Oleh

NURUL RAUDZAH BINTI ADIB RIDZUAN

Oktober 2010

Pengerusi: Mohd. Taufik Hidayat Baharuldin, PhD

Fakulti: Fakulti Perubatan dan Sains Kesihatan

tikus Sprague-Dawley jantan digunakan dalam kajian dan dibahagikan kepada 2 kumpulan, iaitu tikus eustres dan tikus aruhan-stres. Empat dos mitraginin yang berlainan (1.0, 5.0, 10.0 dan 30.0 mg/kg) diberikan secara ‘intraperitoneal’ kepada setiap tikus. Tikus-tikus aruhan-stres telah diragut selama 2 jam dalam kurungan sebelum aktiviti perlakuan dijalankan. Keputusan menunjukkan aktiviti lokomotor meningkat secara statistik (P<0.05) untuk tikus yang diberikan 5.0 dan 30.0 mg/kg mitraginin berbanding 1.0 mg/kg mitraginin dalam tikus tiada-stres. Aktiviti lokomotor turut meningkat dalam tikus-stres dalam semua dos mitraginin, namun keputusannya tidak nyata secara statistik. Aktiviti ‘grooming’ meningkat secara statistik (P<0.05) dalam tikus stres yang diberi 1.0, 5.0, 10.0 dan 30.0 mg/kg mitraginin berbanding kumpulan kawalan. Bagi tikus tiada-stres, aktiviti ‘grooming’ meningkat dalam semua dos mitraginin tetapi keputusannya tidak nyata secara statistik. Dalam kajian keresahan, tiga parameter dijalankan terhadap setiap tikus termasuk masa diambil dalam ‘open arms’, kemasukan ke dalam ‘open arm’ dan masa diambil dalam ‘central platform’. Mitraginin (30.0 mg/kg) menambah masa diambil dalam ‘open arms’ dan kemasukan ke dalam ‘open arm’ dalam tikus-stres dan tiada-stres. Bagaimanapun, 30.0 mg/kg mitraginin mengurangkan masa diambil dalam ‘central platform’ dalam kumpulan stres dan tiada-stres. Masa diambil dalam ‘central platform’ hanya meningkat bagi tikus-stres diberikan 5.0 dan 10.0 mg/kg mitraginin. Tahap kortikosteron dalam tikus-stres yang diberikan semua dos mitraginin meningkat secara nyata (P<0.05) berbanding kumpulan kawalan. Dos mitraginin lebih tinggi mampu untuk mengaruhkan perubahan perlakuan dengan menambah lokomotor, aktiviti ‘grooming’ dan parameter keresahan. Oleh itu, kajian ini menunjukkan mitraginin membentuk sensitiviti terhadap aktiviti lokomotor, ‘grooming’ dan keresahan dengan meninggikan bacaan parameter bersama-sama dengan tahap
kortikosteron di dalam tikus aruhan stres. Kesimpulannya, mitraginin mampu untuk memberikan perangsang psiko dan ciri-ciri anti-keresahan bagi tikus stres dan tiada-stres melalui mekanisme tindakan mitraginin yang sesuai dalam tikus.
ACKNOWLEDGEMENTS

First of all, I would like to thank the Most Merciful Allah SWT for giving me strength throughout the completion of my study. My sincere gratitude goes to my supervisor Dr. Mohd. Taufik Hidayat Baharuldin, my co-supervisor, Dr. Mohd. Aris Mohd. Moklas and member of the Supervisory Committee, Assoc. Prof. Dr. Sharida Fakurazi. Their many guidances, ideas, advices and supports as the research evolved is greatly appreciated. I am also indebted to Mr Shahidan and staffs of Anatomy Laboratory, Department of Human Anatomy, FMHS for helping me to set up the behavioral room and assisted during the laboratory work. My special thanks also goes to staff of Animal Unit, Mrs. Juita Chupri, staff of Histopathology Laboratory for histology work and Mrs. Safarina Ismuddin, staff of Chemical Pathology Laboratory for corticosterone analysis technique. I am also grateful to all lecturers of Department of Human Anatomy, FPSK and my research teammates and colleagues for helping me throughout the research. My heartiest gratitude also goes to my husband, Zaihasry Zainoren for always being there for me through thick and thin and my son, Adam Zahran for the inspiration. Million thanks for the endless love and encouragement. My specials thank also goes to my parents and siblings for continuous support and happiness. Finally, my appreciation goes to Faculty of Medicine, UiTM and Ministry of Higher Education for scholarship and financial support throughout the study.
I certify that an Examination Committee has met on 8th October 2010 to conduct the final examination of Nurul Raudzah binti Adib Ridzuan on her Master of Science (Anatomy) thesis entitled ‘Effects of mitragynine on locomotor and anxiety in rats subjected to restraint stress’ in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the Masters of Science (Anatomy).

Members of the Examination Committee were as follows:

Dr. Zulkhairi Amom, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Dr. Khatiza Haida Ali, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal examiner)

Dr. Roslida Abd. Hamid, PhD
Senior lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal examiner)

Dr. Nasaruddin Abdul Aziz, PhD
Professor
Faculty of Medicine
Cyberjaya University College of Medical Sciences
(External examiner)

Dr. Bujang Kim Huat, PhD
Professor and Deputy Dean,
School of Graduate Studies,
Universiti Putra Malaysia

Date:
The thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Masters of Science. The members of the Supervisory Committee were as follows:

Mohd Taufik Hidayat b. Baharuldin, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Mohd Aris b. Mohd. Moklas, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Sharida bt. Fakurazi, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

NURUL RAUDZAH BT ADIB RIDZUAN
Date: 8th October 2010
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1 Mitragyna speciosa</td>
<td></td>
</tr>
<tr>
<td>2.1.1 Introduction of Mitragyna speciosa</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2 Distribution of Mitragyna speciosa</td>
<td>9</td>
</tr>
<tr>
<td>2.1.3 Usage of Mitragyna speciosa</td>
<td>11</td>
</tr>
<tr>
<td>2.1.4 Alkaloids of Mitragyna speciosa and its pharmacological effects</td>
<td>13</td>
</tr>
<tr>
<td>2.2 Psychostimulant drug</td>
<td>21</td>
</tr>
<tr>
<td>2.2.1 Amphetamine</td>
<td>23</td>
</tr>
<tr>
<td>2.3 Anxiolytic drug</td>
<td></td>
</tr>
<tr>
<td>2.3.1 Diazepam</td>
<td>29</td>
</tr>
<tr>
<td>2.4 Stress</td>
<td></td>
</tr>
<tr>
<td>2.4.1 Effects of stress on behaviour</td>
<td>41</td>
</tr>
<tr>
<td>2.4.2 Restraint stress</td>
<td>42</td>
</tr>
<tr>
<td>2.5 Behavioral analyses</td>
<td>45</td>
</tr>
<tr>
<td>2.5.1 Open field test</td>
<td>46</td>
</tr>
<tr>
<td>2.5.2 Anxiety study</td>
<td>50</td>
</tr>
<tr>
<td>3. THE EXTRACTION AND ISOLATION PROCEDURES OF MITRAGYNYNINE FROM MALAYSIAN Mitragyna speciosa LEAVES</td>
<td></td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>57</td>
</tr>
<tr>
<td>3.2 Objective</td>
<td>58</td>
</tr>
<tr>
<td>3.3 Materials and methods</td>
<td>58</td>
</tr>
<tr>
<td>3.4 Results</td>
<td>64</td>
</tr>
<tr>
<td>3.5 Discussion</td>
<td>69</td>
</tr>
<tr>
<td>3.6 Conclusion</td>
<td>71</td>
</tr>
</tbody>
</table>

xiii
4. EFFECTS OF MITRAGYNINE ON LOCOMOTOR AND GROOMING ACTIVITIES IN RATS
 4.1 Introduction 72
 4.2 Objective 73
 4.3 Materials and methods 74
 4.4 Results 83
 4.5 Discussion 89
 4.6 Conclusion 94

5. EFFECTS OF MITRAGYNINE ON ANXIETY LEVEL IN RATS
 5.1 Introduction 96
 5.2 Objective 98
 5.3 Materials and methods 99
 5.4 Results 106
 5.5 Discussion 114
 5.6 Conclusion 123

6. EFFECTS OF MITRAGYNINE ON STRESS HORMONE (CORTICOSTERONE) LEVEL IN STRESSED RATS
 6.1 Introduction 124
 6.2 Objective 127
 6.3 Materials and methods 127
 6.4 Results 129
 6.5 Discussion 130
 6.6 Conclusion 134

7. SUMMARY, GENERAL CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH 135

REFERENCES 139
APPENDICES 156
BIODATA OF STUDENT 163
LIST OF PUBLICATIONS 164