UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF SOLAR HEATER BOXES AND MANAGEMENT OF
Callosobruchus maculatus FABRICIUS (COLEOPTERA: BRUCHIDAE)
ON SEED ADZUKI BEAN

RAGAA MOHAMMED ELBASHIER ELHADAA

FP 2011 24
DEVELOPMENT OF SOLAR HEATER BOXES AND MANAGEMENT OF *Callosobruchus maculatus* FABRICIUS (COLEOPTERA: BRUCHIDAE) ON SEED ADZUKI BEAN

By

RAGAA MOHAMMED ELBASHIER ELHADAA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

October 2011
DEDICATION

To

My family members especially my beloved mother and my sweet daughter
Abstract of thesis presented to Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

DEVELOPMENT OF SOLAR HEATER BOXES AND MANAGEMENT OF Callosobruchus maculatus FABRICIUS (COLEOPTERA: BRUCHIDAE) ON SEED ADZUKI BEAN

By

RAGAA MOHAMMED ELBASHIER ELHADAA

October 2011

Chairman: Professor Rita Muhamad Awang, PhD.

Faculty: Agriculture

The selection and evaluation of solar heater boxes for trapping solar energy to disinfest legume grains was described. The effectiveness of five materials (cardboard, plywood, Perspex timber and metal) was investigated. Results showed that, cardboard and plywood were the best materials for seed treatment as they trap and retained more heat compared to Perspex and timber solar heater boxes. In addition, they are cheaper and easier to handle compared to metal. It was also concluded that, aluminum foils combined with black paint was the best lining than if aluminum foils or black paint used separately. The effect of seed depth on solar energy trapping inside cardboard and plywood solar heater boxes was also evaluated. Temperatures trapped in cardboard solar heater boxes with 7 kg of adzuki bean seeds were 53.3°C which was 13.9% higher than temperature trapped in plywood solar heater boxes. The effect of solar heat on development of C. maculatus was evaluated. A temperature of 66.4°C was achieved in
solar heater boxes within 15 minutes which caused 100% mortality of adults and 4th
larval instars. Egg hatchability decreased by 70\% and 66.7\% in plywood and cardboard respectively compared with untreated eggs. To verify the effect of solar temperatures, another experiment was done using the oven. Results showed that, times needed for 100\% adult’s mortality were 10, 20, 50 and 70 minutes with temperatures of 70, 60, 50 and 40°C respectively. The effect of solar heat on seed quality of adzuki beans \textit{V. angularis} was also determined. Results showed that, exposure to cardboard and plywood solar heater boxes did not show enormous effect on germination characters for adzuki bean seeds. In addition, experiment in oven was done for more verification. Exposure to temperatures of to 40, 50, 60, and 70°C did not affect germination of adzuki bean seeds. The effectiveness of cardboard solar heater boxes and a method using direct sun exposed seeds covered with plastic (open method) in trapping solar energy was evaluated. The influence of these methods on development of \textit{C. maculatus} and seed quality of adzuki bean seeds was determined. Results showed that, cardboard solar heater boxes trapped temperature mean 11.6\% higher than the temperature mean trapped in the open method. Both methods affect the development of \textit{C. maculatus}. Percentage of adult mortality of 26.7\% was caused by the open method compared to 46.7\% adult mortality for cardboard solar heater boxes. Complete mortality occurred for eggs treated in cardboard solar heater boxes. Cardboard solar heater boxes could trap solar radiation and retained heat as much as possible compared to open method. Both methods have no adverse effect on seed quality of adzuki bean seeds.
Abstrak tesis yang dikemukakan kepada Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PEMBANGUNAN KOTAK HEATER PEMANAS SOLAR DAN PENGURUSAN CALLOSObRUCHUS MACULATUS FABRICUS (COLEOPTERA: BRUCHIDAE) KEATAS KACANG ADZUKI

Oleh

RAGAA MOHAMMED ELBASHIER ELHADAA

Oktober 2011

Pengerusi: Professor Rita Muhamad Awang, PhD.

Fakulti: Pertanian

Pemilihan dan penilaian kotak pemanas solar untuk memerangkap tenaga solar untuk menyahjangkit bijian kekacang telah diterangkan. Keberkesanan lima bahan (kadbob, papan lapis, perspek, kayu dan logam) telah disiasat. Keputusan menunjukkan bahawa, kadbob dan papan lapis adalah bahan-bahan yang terbaik untuk rawatan benih kerana ia memerangkap dan mengekalkan lebih banyak haba berbanding dengan pemanas solar perspek dan kotak kayu. Di samping itu, ia lebih murah dan lebih mudah untuk dikendalikan berbanding logam. Kesimpulan juga telah dibuat bahawa, foil aluminium yang digabungkan dengan cat hitam adalah lapisan yang terbaik jika dibandingkan dengan foils aluminium atau cat hitam yang digunakan secara berasingan. Kesedalaman benih bagi memerangkap tenaga solar di dalam kotak kadbob dan papan lapis pemanas solar adalah juga dinilai. Suhu yang terperangkap di dalam kotak kadbob
ACKNOWLEDGEMENTS

I wish to express my deepest gratitude to the numerous people who have walked with me along the journey of this thesis. First and foremost I would like to express my deep gratefulness to my supervisor Prof Rita Muhamad Awang for her kind assistance, support, critical advice, encouragement, suggestions and direction throughout my research and preparation of this thesis. Many ideas originated in our frequent discussion and her constant support and patience over the years have been of invaluable help.

I also wish to extend my sincere gratitude and appreciation to my co-supervisors, Associate Professor Ionel Valeriu Grozescu, Prof. Dzolkhifli B Omar, and Associate professor Uma Rani A/P Sinniah for their guidance, encouragement and supervision throughout the course of the study until the completion of this thesis. I truly admire them for their openness, honesty and sincerity and appreciate the time that they devoted in advising me and showing me the proper directions to carry this research.

I would also like to express my gratitude towards to the technicians of Entomology laboratory and the staff of Plant Protection Department for their assistance. Many grateful to Sudan University of Science and Technology for their support.

Last but not the least, my heart-full gratitude and love to my mother, my daughter Duaa, my (late) father, my brothers and sisters, and siblings whose unconditional support and love has made this dream come true to me. Special grateful and thanks to Dr. Ahmed Hussein and Dr Omer Zaroog and his family, for their help and support with patience.
I certify that an Examination Committee has met on 18/10/2011 to conduct the final examination of Ragaa Mohammed Elbashier Elhadaa on her Doctor of Philosophy thesis entitled “THE DEVELOPMENT OF SOLAR HEATER BOXES FOR THE MANAGEMENT OF CALLOSOPRUCHUS MACULATUS (COLEOPTERA: BRUCHIDAE) AND SEED QUALITY OF ADZUKI BEAN” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Assoc.Prof. Dr Zainal Abidin Mior Ahmed
Faculty of Agriculture,
Universiti Putra Malaysia
(Chairman)

Assoc.Prof. Dr Faiza Abood
Faculty of Forestry,
Universiti Putra Malaysia
(Internal Examiner)

Dr Nur Azura Adam
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Name of External Examiner, PhD
College of
University
(External Examiner)

NORITAH OMAR, PhD
Assoc. Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted in fulfillment of the requirements for the degree of Doctor of Philosophy. Members of the Supervisory Committee were as follows:

Rita Muhamad Awang, PhD
Professor.
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

IONEL VALERIU GROZESCU, PhD
Assoc.Professor.
Faculty of Science
Universiti Putra Malaysia
(Member)

UMA RANI A/P SINNIAH, PhD
Assoc. Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

DZOLKHIFLI B OMAR, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously and is not concurrently, submitted for any other degree at University Putra Malaysia or other institutions.

RAGAA MOHAMMED ELBASHIER ELHADAA

Date: 18 October 2011
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRAK v
ACKNOWLEDGMENTS viii
APPROVAL ix
DECLARATION xi
LIST OF TABLES xvii
LIST OF FIGURES xix
LIST OF PLATES xxi

CHAPTER 1

1 INTRODUCTION 1

2 LITERATURE REVIEW 5

2.1 Legumes 5
 2.1.1 Economic importance and usages 5
 2.1.2 Adzuki beans 7
 2.1.2.1 Economic importance and usage 7
 2.1.2.2 Classification 8
 2.1.2.3 Description 9
 2.2 Seed quality 9
 2.2.1 Germination 9
 2.2.2 Moisture Content 11
 2.2.3 Effect of temperature on seed quality 12
 2.3 Economic importance of stored products insects 13
 2.4 Family Bruchidae 14
 2.4.1 Identification 14
 2.4.2 Damage caused by insects 15
 2.5 Callosobruchus maculatus 16
 2.5.1 Classification 16
 2.5.2 Morphology 16
 2.5.3 Biology 17
 2.5.4 Control of C. maculatus 18
 2.6 Development of treatments for eliminating stored product insects 20
 2.6.1 Application of constant heat in management of stored product insects 22
 2.6.2 Application of solar energy in management of stored product insects 24
 2.7 Solar energy 26
 2.7.1 Heat transfer 26

xii
2.7.2 Solar energy collection 27
2.7.3 Thermal properties of materials 29
2.8 Mechanism of high temperatures effects on stored-product insects 30

3 SELECTION AND EVALUATION OF MATERIALS FOR SOLAR HEATER BOXES AND THEIR CAPACITY IN TRAPPING SOLAR ENERGY 33
3.1 Introduction 33
3.2 Materials and Methods 34
 3.2.1 Design of solar heater boxes and materials used 34
 3.2.1.1 Design of solar heater boxes 34
 3.2.1.2 Materials used 36
 3.2.2 Experimental design and temperature measurement 38
 3.2.3 Equipments 39
 3.2.3.1 Solar heater boxes 39
 3.2.3.2 Data logger 40
 3.2.3.3 Thermocouples 40
 3.2.4 Methodology 41
 3.2.4.1 Evaluation of solar energy trapping capacity of different solar heater boxes 41
 3.2.4.2 Effect of seed depth on temperatures trapped by solar heater boxes 43

3.3 Data analysis 44
3.4 Results and Discussion 44
 3.4.1 Evaluation of solar energy trapping capacity of different solar heater boxes materials 44
 3.4.2 Effect of seed depth on temperatures trapped by solar heater boxes 76
3.5 General Conclusion 79

4 EFFECT OF SOLAR HEATER BOXES ON MORTALITY AND DEVELOPMENT OF C. MACULATUS 80
4.1 Introduction 80
4.2 Materials and Methods 81
 4.2.1 Insect culture 81
 4.2.2 Solar heater boxes and Data logger 82
 4.2.3 Effect of solar heater box treatments on development of C. maculatus 82
 4.2.3.1 Effect of solar heater box treatments on oviposition and adult mortality of C. maculatus 82
 4.2.3.2 Effect of solar heater box treatments on egg hatchability of C. maculatus 83
 4.2.3.3 Effect of solar heater box treatment on 4th larval instar of C. maculatus 83
 4.2.4 Effect of constant heat on development of C. maculatus 84
 4.2.4.1 Effect of constant heat on oviposition and adult
mortality of $C.\ maculatus$

4.2.4.2 Effect of constant heat on egg hatchability and adult emergence of $C.\ maculatus$

4.2.5 Data analysis 86

4.3 Results and Discussion 87

4.3.1 Effect of solar heater boxes treatment on development of $C.\ maculatus$ 87

4.3.1.1 Effect of solar heater box treatments on oviposition and adult mortality of $C.\ maculatus$ 87

4.3.1.2 Effect of solar heater box treatments on egg hatchability of $C.\ maculatus$ 89

4.3.1.3 Effect of solar heater box treatments on 4th larval instar of $C.\ maculatus$ 91

4.3.1.4 Conclusion 93

4.3.2 Effect of constant heat on development of $C.\ maculatus$ 94

4.3.2.1 Conclusion 101

4.4 Conclusion 101

5 EFFECT OF SOLAR HEATER BOXES ON SEED QUALITY OF ADZUKI BEANS (Vigna Angularis) 102

5.1 Introduction 102

5.2 Materials and Methods 103

5.2.1 Effect of solar heater box treatment on seed quality of adzuki bean ($V.\ angularis$) 103

5.2.1.1 Moisture content 103

5.2.1.2 Germination percentage 104

5.2.1.3 Germination rate 104

5.2.1.4 Seedling abnormality 104

5.2.1.5 Root and shoot length 105

5.2.2 Effect of constant heat on seed quality of adzuki bean ($V.\ angularis$) 105

5.2.2.1 Moisture content 105

5.2.2.2 Germination percentage 105

5.2.2.3 Root and shoot length 106

5.2.3 Data analysis 106

5.3 Results and Discussion 106

5.3.1 Effect of solar heater box treatments on seed quality of adzuki bean ($V.\ angularis$) 106

5.3.1.1 Moisture content 106

5.3.1.2 Germination percentage 109

5.3.1.3 Germination rate 111

5.3.1.4 Seedling abnormality 112

5.3.1.5 Root and shoot length 114

5.3.2 Effect of constant heat on seed quality of adzuki bean ($V.\ angularis$) 117

5.3.2.1 Effect of constant heat at 40°C on seed quality of 117
5.3.2.2 Effect of constant heat at 50°C on seed quality of adzuki bean

5.3.2.3 Effect of constant heat at 60°C on seed quality of adzuki bean

5.3.2.4 Effect of constant heat at 70°C on seed quality of adzuki bean

5.4 Conclusion

6 EFFECTIVNESS OF SOLAR HEAT TREATMENT USING CARDBOARD SOLAR HEATER BOXES AND AN OPEN METHOD

6.1 Introduction

6.2 Materials and methods

6.2.1 Measurement of temperature

6.2.2 Setting up of treatments (‘cardboard heater box’ and ‘open method’)

6.2.3 Effect of solar heat treatments on development of C. maculatus

6.2.4 Effect of solar heat treatments on seed quality of adzuki bean

6.2.5 Data analysis

6.3 Results and Discussion

6.3.1 Temperature trapped by cardboard solar heater boxes and the open method

6.3.2 Effects of solar heat treatments on development of C. maculatus

6.3.2.1 Effect of cardboard solar heater boxes and the open method on adult mortality of C. maculatus

6.3.2.2 Effect of cardboard solar heater boxes and the open method on egg hatchability of C. maculatus.

6.3.3 Effect of cardboard solar heater boxes and the open method on seed quality of adzuki bean

6.3.3.1 Effect of cardboard solar heater boxes and the open method on seed moisture content of adzuki bean

6.3.3.2 Effect of cardboard solar heater boxes and the open method on seed germination percentage of adzuki bean

6.3.3.3 Effect of cardboard solar heater boxes and the open method on root and shoot length of adzuki bean

6.4 Conclusion

7 SUMMARY, GENERAL CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH