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RINGKASAN

Pengunaan proses stokastik untuk mengambarkan dan menganalisa corak hujan harian di Universiti
Pertanian Malaysia (U.P.M.), Serdang dihuraikan. Suatu model yang berdasarkan kepada rantai
Markov peringkat pertama telah dibentuk. Model tersebut mengunakan data hujan harian untuk mem­
perolehi anggaran bagi kebarangkalian peralihan lVlarkov. Model ini membahagikan tahun kepada empat
musim. Tiap-tiap satu musim mempunyai matriks kebarangkalian peralihan yang berasingan. ]ulat hujan
harian dibahagikan kepada sebelas kelas. Oleh itu, tiap-tiap satu musim mempunyai matriks kebarangkalian
peralihan yang mengandungi 11 X 11 unsur. Model ini mempunyai keupayaan untuk meramalkan rekod
hujan harian sapanjang mana yang diperlukan bagi kawasan tersebut. Penilaian model ini dijalankan dengan
mengkaji perbezaan di antara rekod ramalan model dan rekod yang sabenar bagi hujan harian di kawasan
tersebut untuk satu tahun.

SUMMARY

An application of stochastic process for describing and analysing daily the rainfall pattern at Universiti
Pel·tanian Malaysia (V.P.M.), Serdang, is presented. A model based on the first-order Markov chain was
developed. The model uses historical rainfall data to estimate the Nlarkov transition probabilities. The
year is divided into four seasons, each is represented by a separate transition probability matrix. The range
of rainfall values is divided into ele·ven states, thus resulting in a 11 X 11 transition probability matrix for
each season. The model is capable of simulating a daily rainfall record ofany length for the area. It is evaluated
by comparing the simulation result with observed data for a one-year period.

INTRODUCTION

The natural systems are so complex that no
exact laws have yet been developed that can
explain completely and precisely the natural
hydrological phenomena. Before such laws are
found complicated hydrological systems such as
rainfall can only be approximated essentially by
modelling.

The design of a water resources system and
the analysis of watershed behaviour often require
long records of rainfall for simulation studies.
For this purpose historical records may be in­
adequate and a method must be found to
synthesize these records. A rainfall model based
on daily precipitation is attractive because rela-

tively long and reliable records can be generated,
and such a model is frequently sufficient for
many practical problems. Such a model is
needed in the evaluation of excessive discharges
or draughts, and in the development and manage­
ment of water resources systems.

Stochastic Models of Rainfall

Statistical methods in hydrology consist of
two main groups, probabilistic and the
stochastic methods. In the probabilistic method,
events are treated as time independent. The
stochastic method, in addition to its probabilistic
nature, treats the sequence of events as time
dependent.
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The Russian mathematician, Markov, intro­
duced the concept of a process (later named
after him 'a Markov process') in which the pro­
bability of the process being in a given state at a
particular time may be deduced from knowledge
of the immediately preceding state. A Markov
chain is a sequence or chain of discrete states
in time for which the probability of transition
from one state to any given state in the next step
in the chain depends on the condition during the
previous step. The Markov chain contains a
finite number of states and the probabilities
associated with transition between states are
stationary with time.

matrix for the kth. season by Pjj(k). It represents
the probability that the rainfall on any day in the
kth. season will belong to class Cj given that it
was in class Ci one day earlier.

Transition Probability Matrices

The model for U.P.M. consists of 4 seasons,
each with 11 states. The range of rainfall for
each state is shown in Table 1. The four seasons
used in the model are as follows.

TABLE 1
States of the Rainfall Model for U.P.l\I.

Models of rainfall based on stochastic
processes have been developed by various workers­
Gabriel and Neuman,(1962;) Green, (1964) ;Wiser,
(1966); Feyerham and Bark, (1967). Todorovic
and Woolhiser (1975) presented an n-day rainfall
model in which the transition from wet to dry
day is based on a 2-state Markov chain, and the
amount of rain on rainy days is assumed to be
exponentially distributed. Haan et al., (1976)
describe a 7-state Markov chain model of daily
rainfall in which the amount of rain in each state
is assumed to be uniformly distributed, except
for the last state in which a shifted exponential
distribution is used.

State

1
2
3
4
5
6
7
8
9

10
11

Range of Rainfall, X
(centimeters)

X:::; 0025
0.025 < X :::; 0.127
0.127 < X :::; 0.254
0.254 < X :::; 0.381
0.381 < X :::: 0.508
0.508 < X :::: 0.762
0.762 < X < 0.889
0.889 ...::: X < 1.524
1.524 < X :::; 2.413
2,413 < X :::; 4.4+5
4.H5 < X

Model for V.P.M., Serdang

The daily rainfall model presented here for
U.P.M. Serdang is based on a first-order Markov
chain with eleven states. It is an extension of
the model presented by Haan et al. (1976)., The
model can be represented as follows.

1. ovember to March - the orth-East
Monsoon period.

2. April - transitional period.

3. May to September - the South-West
Monsoon period.

4. October - transitional period.

where fij (k) is the historical frequency of tran­
sition from Cj to class Cj within season k, and
s is the number of seasons.

The computation of Pii (k) for all i,j and k
was carried out in a computer (Abdul Salam,
1980). The transition probability matrix obtained
for the 4 seasons are shown in Tables 2, 3, 4,
and 5.

Daily rainfall records of V.P.M. at Serdang
for 1968 to 1978 were used to determine the
parameters in the model. The method of maxi­
mum likelihood was used for estimating the
transition probabilities:

k = 1,2, , s.

i,j = 0,1,2, , m.pij (k) = f jj (k)

Let X t (t = 0, 1, 2, ) be observation of
rainfall for day t. Also, let the range of rainfall
observable be divided into m + 1 classes denoted
by Co, C1> ez, ···, Cm. If P[Xt+l =
Cj ,Xo = Co, Xl = C1...... , X t = Cj] =
P[Xt+1 = C j l Xt = Cj] (where equals in above
means belong to the class), then we have a first­
order Markov chain with m+l states. If in
addition, within a specified period, which we
will call a season, P[Xt+l = Cj I X t = Cj] does
not depend on t, then the transition probabilities
may be denoted by pjj and the Markov chain is
said to be stationary. pjj is thus the probability
that the rainfall on any day in the season will
belong to class Cj given it was in class Cj one
day earlier. These transition probabilities may
then be gathered together into a m+1 transition
matrix Pij.

Denoting season by the letter k, then we
can represent the stochastic transition probability
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'fABLE 2 >
Transition Probability Matrix For North-East Monsoon Season (November to March). en..;

ACTUAL DAY 0n
::r;

STATE
:>

1 2 3 4 5 6 7 8 9 10 11 en
..;.-n

1. 0.6309 0.0593 0.0444 0.0196 0.0210 0.0346 0.0185 0.0605 0.0494 0.0358 0.0260 ~
0

2. 0.3900 0.1400 0.0700 0.0400 0.0600 0.0500 0.0000 0.1200 0.0500 0.0300 0.0500 tim
3. 0.4545 0.0909 0.0649 0.0519 0.0649 0.0390 0.0130 0.0650 0.0390 0.0779 0.0390

r-<
0

4. 0.3421 0.0526 0.0789 0.0526 0.0131 0.0789 0.0526 0.0263 0.1052 0.0263 0.0789 '!1
w ti

5. 0.4107 0.0357 0.0892 0.0178 0.1071 0.0714 0.0357 0.0714 0.0357 0.0535 0.0714 :>-r-<
6. 0.5238 0.0476 0.0317 0.0158 0.0476 0.0317 0.0634 0.0634 0.0634 0.0952 0.0317 >-<

:;.:i

7. 0.3823 0.0294 0.0882 0.0294 0.0588 0.0000 0.0882 0.0882 0.1176 0.0588 0.0588 >-Z
8. 0.3909 0.0818 0.0636 0.0181 0.0545 0.0454 0.0091 0.1272 0.1181 0.0909 0.0091 'rI

:>
9. 0.5465 0.0348 0.0465 0.0465 0.0232 0.0581 0.0232 0.0581 0.0465 0.0697 0.0348

r-<
r-<

10. 0.4756 0.0487 0.0487 0.0000 0.0243 0.0243 0.0365 0.1341 0.0975 0.0975 0.0121
'rI
0
10

It. 0.3863 0.1136 0.0454 0.0909 0.0681 0.1136 0.0227 0.0454 0.0227 0.0909 0.0000 C
'"t:l

~
PRECEDING DAY



TABLE 3
Transition Probability Matrix For First Transitional Period Season (April).

ACTUAL DAY

STATE 1 2 3 4 5 6 7 8 9 10 11

a::
1. 0.5530 0.0682 0.0530 0.0303 0.0151 0.0227 0.0454 0.0606 0.0606 0.0227 0.0682

N
2. 0.4782 0.0869 0.0434 0.0000 0.0000 0.0434 0.0000 0.0869 0.0434 0.1739 0.0434 0

::r:
0.1538 0.0000 >

3. 0.2307 0.0769 0.0769 0.0000 0.0000 0.0000 0.1538 0.2307 0.0769 tl-m
4. 0.1818 0.2727 0.0000 0.0909 0.0000 0.2727 0.0000 0.0000 0.0909 0.0909 0.0000 >~

5. 0.2500 0.1250 0.0000 0.0000 0.1250 0.1250 0.0000 0.0000 0.1250 0.1250 0.1250 Z
tl

6. 0.3571 0.0714 0.1428 0.0000 0.0714 0.1428 0.0714 0.0714 0.0714 0.0000 0.0000 ~

tn
7. 0.5000 0.0833 0.0000 0.0000 0.0000 0.0833 0.0833 0.0000 0.0833 0.1666 0.0000 >

r'

8. 0.0869 0.0000 0.0434 0.1304 0.0869 0.0434 0.0000 0.2174 0.1739 0.0869 0.0869 >
a::

9. 0.3888 0.0555 0.1111 0.1111 0.0000 0.0000 0.0000 0.1111 0.0555 0.1666 0.0000

10. 0.5238 0.0952 0.0476 0.0000 0.0476 0.0476 0.0952 0.0476 0.0000 0.0952 0.0000

11. 0.4666 0.0666 0.0000 0.0666 0.0666 0.0666 0.0000 0.1333 0.0000 0.0000 0.1333

PRECEDING DAY



TABLE 4 ~
Transition Probability Matrix For South-West Monsoon Season (May - September) en...,

ACTUAL DAY 0
()
::r:

STATE 1 2 3 4 5 6 7 8 9 10 11
~
en...,
(;

1. 0.6789 0.0421 0.0358 0.0189 0.0252 0.0389 0.0126 0.0536 0.0316 0.0421 0.0200 ?:

0.5542 0.0602 0.0723 0.0964 0.0361
0

2. 0.0602 0.0240 0.0240 0.0602 0.0120 0.0000 0
tT1

3. 0.6056 0.0704 0.0423 0.0000 0.0423 0.0563 0.0141 0.0282 0.1127 0.0141 0.0141 1"'

0
4. 0.5833 0.0555 0.0555 0.0555 0.1111 0.0555 0.0277 0.0000 0.0277 0.0277 0.0000 ",

Ul 0
5. 0.4889 0.0667 0.0889 0.0444 0.0889 0.0667 0.0000 0.0000 0.0444 0.0667 0.0444 2:

1"'
6. 0.5500 0.0833 0.1167 0.0000 0.0167 0.0167 0.0000 0.0833 0.0333 0.0500 0.0500 -<

:;0

7. 0.5714 0.0476 0.0000 0.1428 0.0476 0.0000 0.Q4.76 0.0476 0.0476 0.0476 0.0000 >
8. 0.5294 0.0706 0.0706 0.0353 0.0235 0.0118 0.0118 0.0941 0.1 059 0.0235

Z
0.0235 ",

~

9. 0.5205 0.0685 0.0685 0.0548 0.0274 0.0411 0.0137 0.0548 0.0548 0.0411 0.0548 1"'
1"'

10. 0.5312 0.0938 0.0313 0.0156 0.0313 0.0625 0.0156 0.0625 0.0625 0.0781 0.0156 '!1
0

11. 0.3750 0.1 563
:;0

0.1250 0.0313 0.0000 0.0000 0.0000 0.1563 0.0938 0.0625 0.0000 C
.."

PRECEDING DAY
~



TABLE 5
Transition Probability Matrix For Second Transitional Period Season (October)

ACTUAL DAY

STATE 1 2 3 4 5 6 7 8 9 10 11

1. 0.5827 0.0551 0.0472 0.0079 0.0394 0.0630 0.0157 0.0787 0.0630 0.0394 0.0079 ~
N

2. 0.3000 0.0500 0.0500 0.1000 0.0500 0.0500 0.0000 0.1 500 0.0500 0.2000 0.0000 0
tI:;

3. 0.4286 0.0714 0.0000 0.0714 0.0000 0.0000 0.0714 0.2143 0.1428 0.0000 0.0000 ;I>
CI......

4. 0.1426 0.0000 0.0000 0.0000 0.0000 0.2857 0.0000 0.4286 0.0000 0.1426 0.0000 tTl

0'1 >-
5. 0.5000 0.0625 0.0625 0.0000 0.0000 0.0000 0.0000 0.1250 0.1250 0.1250 0.0000 Z

CI

6. 0.3158 0.1053 0.0000 0.0000 0.1580 0.0526 0.0000 0.0526 0.2632 0.0000 0.0526 >
7. 0.1111 0.1111 0.0000 0.0000 0.2222 0.1111 0.0000 0.2222 0.1111 0.1111 0.0000

en
;I>
r

8. 0.4828 0.0690 0.0690 0.0000 0.0345 0.0690 0.0690 0.0000 0.0690 0.0690 0.0690 ;I>

3::
9. 0.2414 0.1034 0.0000 0.0690 0.1034 0.0345 0.0690 0.1034 0.1 034 0.1034 0.0690

10. 0.3000 0.0500 0.0500 0.1000 0.0500 0.0000 0.0500 0.0500 0.1500 0.0500 0.1500

1t. 0.2000 0.0000 0.1000 0.0000 0.0000 0.3000 0.0000 0.0000 0.3000 0.1000 0.0000

-----------------,
PRECEDING DAY
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Probability Distribution for Each Class'

Probability distributions w~r~:~hen fitted to
each class for all seasons. The assumption is
made that the same set of distributions are appli­
cable for each season. The distributions were
estimated using the transition matrix of each
season. Cumulative distribution functions
Fj (k; x), for j = 0,1,2, , m were determined,
where

Fj (k; x) = P [next day rainfall < x; when
rainfall today belongs to class
Cj for season k].

Upon analysing the transition matrix, it was
determined that exponential density function is
the most appropriate. Exponential density func­
tion can be represented as follows:

fj (k; x) = A.ik exp (- Ajk x) for x> 0
Ajk> 0

where,

1 expected value of the distribution
for class j in season k.

Ajk

The cumulative function is thus given by

Fj (K; x) = 1-exp (- Ajk x)

The parameter Ajk is the value which defines the
specific exponential distribution representing each
class for each season. It has the dimension of
inverse rainfall (mm- I ), and it is the inverse of
the expected value of the rainfall for each class in
the particular season. Table 6 shows the values
of Ajk for each class in the 4- seasons.

Model Evaluation
Having the transition probability matrices

and the probability distribution functions for
each class in each season, it is thus possible to
generate simulated daily rainfall records for any
duration for U.P.M. A daily simulation run of
a one-year period beginning with 1st. November
1978 was initiated for the purpose of model
evaluation. The simulation process was carried
out on a computer (Abdul Salam, 1980), where
ten simulations were run for each month.

In evaluating the model, it should be remem­
bered that the purpose of the model is for gene­
rating synthetic rainfall records which would
have broadly the same properties as historical
data. These synthetic rainfall records are
necessary for water resources planning studies,
since in most situations historical data are not
easy to come by especially for long periods. In
water resources planning studies, the more
critical variables are the broad rainfall pattern
such as the annual rainfall variation and the
number of wet and dry days. Based on this
philosophy, the model for U.P.M. will be
evaluated as to whether it has broadly the same
properties as that of the observed values.

Annual Rainfall
The results of the ten simulations with

regard to the annual rainfall value are presented
in Table 7.

Daily Rainfall Evaluation
Table 8 shows the frequency of simulated

rainfall with values greater than Smm, 10mm
and 20mm, for the simulated period of one year.

TABLE 6
Values of hjk for Each State in the 4 seasons.

E

Season North-East First South-"Vest Second
Monsoon Transitional Monsoon Trknsitional

State Period Period

(Nov. - March) (April) (May - Sept.) (9:ctober)

1. 0.19258 0.13046 0.21783 0.,20324
2. 0.13232 0.09229 0.20481 0.09475
3. 0.13464 0.09107 0.19664 0\15816
4. 0.13232 0.14084 0.33827 0.06585
5. 0.10212 0.06408 0.14259 0.11897
6. 0.10915 0.22452 0.14568 0.09888
7. 0.12572 0.11637 0.23351 0.09455
8. 0.09810 0.06529 0.16501 0.10869

9. 0.11960 0.11495 0.18676 0.08026
10. 0.12627 0.18834 0.15482 0.06529

11. 0.17306 0.09618 0.15778 ".)'...0.08778
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TABLE 7
Annual Rainfall Values from Simulation.

It demonstrates that the model closely approxi­
mated the number of days within the year which
have rainfall values within the range shown in
the table.

Simulation
Predicted Annual

Rainfall (mm)

Table 9 gives the magnitude of the largest
daily rainfall for the ten simulations along with
the average observed value. Here again the
model seems to be doing a reasonably good job
of simulating the rainfall pattern. However, a
slight trend toward underestimating the largest
rainfall is indicated.

TABLE 9
Maximum Daily Rainfall

2

3

4

5

6

7

8

9

10

Average

Standard deviation

Average Observed Value

Standard deviation

2425.8

2470.0

2402.3

2475.7

2464.7

2375.3

2388.7

2342.7

2493.2

2532.1

2437.1

59.6

2221.1

297.0

Simulation

1

2

3

4

5

6

7

8

9

10

Average

Standard deviation

Average Observed Value

Maximum Daily
Rainfall (mm)

120.5

88.9

105.3

63.5

48.7

91.0

73.5

82.3

50.2

116.5

84.1

25.1

121.5

TABLE 8
Frequency of Simulated Rainfall with Various Range of Values

No. of days No. of days No. of days
with rainfall with rainfall with rainfall

Simulation >5mm >tomm >20mm
------ ------

103 81 26

2 91 74 31

3 109 63 27

4 103 65 29

5 120 70 32

6 109 61 28

7 93 64 33

8 105 69 31

9 111 72 34

10 95 65 29

Average 103.9 68.4 30.0

Average observed value 92 61 41
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CONCLUSION

A rainfall model for Universiti Pertanian
Malaysia, Scrdang, was developed bascd on a
first-order Markov chain. Simulated rainfall
was comparcd with actual rainfall for a one-yc?r
period. It was found that the model is doing a
reasonably good job of simulating a rainfall
pattern for the area. By applying factors for
area and shape, it is possible for this model to be
used for generating synthetic watershed precipi­
tation data which C?n be convcrted to run off
data. It C?n then be used for soil and water
enginecring studies in the area.

Stochastic and simulation techniques are
becoming increasingly popular in hydrologic~.l

design and analysis. These techniques are
powerful tools which are available to present day
engineers. This study is an attempt to use these
techniques to represent the rainfall pattern at
Universiti Pertanian Malaysia, Serdang, which
can hopefully be used in future hydrological
studies in the area.
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