UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF ORAL AVIAN INFLUENZA VIRUS SUBTYPES H5 DNA VACCINES USING ATTENUATED SALMONELLA TYPHIMURIUM AND SILVER NANOPARTICLES AS CARRIERS

SEYED DAVOUD JAZAYERI

IB 2012 1
DEVELOPMENT OF ORAL AVIAN INFLUENZA VIRUS SUBTYPES H5 DNA VACCINES USING ATTENUATED SALMONELLA TYPHIMURIUM AND SILVER NANOPARTICLES AS CARRIERS

By

SEYED DAVOUD JAZAYERI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

February 2012
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

DEVELOPMENT OF ORAL AVIAN INFLUENZA VIRUS SUBTYPES H5 DNA VACCINES USING ATTENUATED SALMONELLA TYPHIMURIUM AND SILVER NANOPARTICLES AS CARRIERS

By
SEYED DAVOUD JAZAYERI

February 2012

Chairman: Professor Abdul Rahman bin Omar, PhD

Institute: Institute of Bioscience

Recent epizootics of highly contagious OIE List A diseases, such as foot and mouth disease, classical swine fever and avian influenza (AI), have led to the implementation of stamping out policies resulting in the depopulation of millions of animals. In order to avoid the destruction of large numbers of animals, the possibility of pursuing different control strategies should be considered. Hence, with the advances in modern vaccine technologies, several different vaccines are currently available against AI virus (AIV) subtype H5N1. DNA vaccines are potentially safer than other traditional vaccines, such as, the whole-killed viral vaccines, are relatively inexpensive to manufacture and store, and have the potential for simultaneous immunization against multiple antigens or pathogens. Administration of DNA vaccine has been shown to stimulate immune responses, including both humoral and cellular responses. Although DNA
vaccines offer several advantages, among the major setbacks are: the vaccine is unable to induce strong immunity and is not applicable for mass vaccination of poultry. Hence, there is a need to develop better delivery systems and/or adjuvants. In this study, *S. typhimurium* strain SV4089 and green synthesis silver nanoparticle (AgNP) were used as carriers for DNA vaccine expressing the H5 gene (pcDNA3.1/H5) of AIV A/Ck/Malaysia/5858/04 (H5N1). The safety and immunogenicity of the formulated DNA vaccines were evaluated based on cytotoxicity, humoral and cellular immune responses as well as cytokine production.

Attenuated *Salmonella enterica* sv. *typhimurium* (*S. typhimurium*) strain SV4089 is a double mutant (Dam and phoP) derived from wild type *S. typhimurium* strain SL1344, was used as carrier for oral H5 DNA vaccine, pcDNA3.1/H5. Primary chick cells from 18 days specific-pathogen-free (SPF) embryo were used to determine the level of mRNA cytokine expression following *in vitro* infection with live and killed from both the attenuated and wild type *S. typhimurium* strains SV4089 and SL1344, respectively by using multiplex quantitative gene expression assay. Live *S. typhimurium* SL1344 showed strong expression of pro-inflammatory (GM-CSF, IL-1β, TGF-β, TNFSF13B, IL-12β, IL-6 and IL-8), Th1 (IFN-γ, IL-2, IL-15, IL-18) and Th2 (IL-4, IL-10) cytokines from infected primary chick cells. Although attenuated *S. typhimurium* SV4089 is also able to induce all the examined cytokines, the levels of expression were significantly low ranging from 1.3 to 28 fold compared to the wild type. Unlike the live wild and attenuated strains, infection of primary cells with killed strains of *Salmonella* associated with little or no induction of pro-inflammatory (IL-8), Th2 (IL-10, IL-4) and Th1 (IL-18) expression. pcDNA3.1/H5 was formulated using green synthesis of sliver nanoparticles (AgNP) with polyethylene glycol (PEG). The AgNP were successfully synthesized, uniformly dispersed
with size in the range of 4 to 18 nm with an average size of 11 nm by using moderated temperature. Cytotoxicity of the prepared AgNP was evaluated in vitro and in vivo using MCF-7 cells and chicken splenic cytokine expression, respectively. At concentration of -5 log \(_{10}\) of AgNP, no cytotoxic effects were detected in MCF-7 cells with 9.5 % cell death compared to the control. One-day old SPF chicks immunized once by oral gavage with 10 μl of pcDNA3.1/H5 (2000 ng/mL) coated with 40 μl AgNP (3.7×10\(^{-2}\) μg of Ag) did not show any clinical manifestations.

Attenuated \(S.\ typhimurium\) SV4089 as a potential DNA vaccine carrier in young chickens was carried out in newly hatched SPF chicks immunized once by oral gavage with \(10^9\) Salmonella colony-forming units. No deaths nor side effects were found at post-immunization with the attenuated strain. Viable bacteria were detected as soon as 3 days after inoculation by plating, fluorescent in situ hybridization (FISH) and polymerase chain reaction (PCR) from spleen, liver and cecum. Flow cytometry analysis of oral inoculated chickens against attenuated \(Salmonella\) on peripheral mononuclear blood cells (PBMC) did not show any significant responses on CD3\(^+\)/CD4\(^+\) and CD3\(^+\)/CD8\(^+\) cells. Regardless of the duration, immunized chickens with attenuated \(Salmonella\) strain, showed expression on IL-1\(\beta\), IL-6, TNFSF13B (pro inflammatory cytokines) and IL-15, IL-18 and IL-12\(\beta\) (Th1 cytokine) although no significantly fold changes were recorded during 35 days experiment.

Serum samples collected from the intramuscular (IM) immunized group elicited low hemagglutination-inhibition (HI) titres, while chickens immunized with attenuated \(S.\ typhimurium\)/pcDNA3.1/H5 and AgNP/pcDNA3.1/H5 showed rapidly increasing antibody
against H5 on day 14 after immunization. The highest average antibody titres were detected on day 35 after immunization via IM, attenuated \textit{S. typhimurium}/pcDNA3.1/H5 and AgNP/pcDNA3.1/H5 immunized groups, at 4.0±2.8, 51.2±7.5, and 51.2±7.5 % respectively.

Attenuated \textit{S. typhimurium}/pcDNA3.1/H5 and AgNP/pcDNA3.1/H5 also elicited both CD4\(^+\) and CD8\(^+\) T cells in immunized chickens as early as day 14 after immunization, at 20.5±2.0 (CD4\(^+\)), 22.9±1.9 % (CD8\(^+\)) and 7.5±2.0 % (CD4\(^+\)), and 20±1.9 % (CD8\(^+\)), respectively. Meanwhile, the CD4\(^+\) and CD8\(^+\) T cells in chickens vaccinated intramuscularly were low, at 5.9±0.9 and 8.5±1.3 %, respectively. Regardless of the duration, immunization of chickens with attenuated \textit{S. typhimurium}/pcDNA3.1/H5 enhanced IL-1\(\beta\), IL-6, TNFSF13B, TGF-\(\beta\), IL-12\(\beta\), IL-15 and IL-18 expressions although no significant differences were recorded in chickens vaccinated via IM. Immunization of chickens with AgNP/pcDNA3.1/H5 also induced similar cytokine expression profiles except for IL-6 and TNFSF13B. Although no significant differences were recorded in chickens inoculated with AgNP and AgNP/pcDNA3.1.

Hence, single oral administrations of the attenuated \textit{S. typhimurium} containing pcDNA3.1/H5 and AgNP/pcDNA3.1/H5 could induce strong antibody, T cell and Th1-like cytokine responses against avian influenza virus in chickens. This study provide valuable information for further study to determine the efficacy of the vaccine to induce protection against challenge with virulent H5N1 virus.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafeh

PEMBANGUNAN VAKSIN ORAL VIRUS SELESEMA BURUNG SUBTIP H5 MENGGUNAKAN SALMONELLA TYPHIMURIUM ATTENUAT DAN PARTIKEL NANO PERAK SEBAGAI PEMBAWA

Oleh

SEYED DAVOUD JAZAYERI

Februari 2012

Pengerusi: Profesor Abdul Rahman bin Omar, PhD
Institut: Institut Biosains

Baru-baru ini, penyakit epizotik yang mudah berjangkit dalam senarai A OIE seperti penyakit kuku dan mulut, classical swine fever dan selesema burung (AI), telah membawa kepada pelaksanaan polisi stamping out yang menyebabkan pemusnahan berjuta-juta haiwan. Untuk mengelakkan pemusnahan haiwan secara besar-besaran, pelaksanaan strategi kawalan yang berlainan perlu ditimbangkan. Oleh itu, dengan kemajuan teknologi vaksin moden, beberapa jenis vaksin yang berbeza kini boleh digunakan untuk AI H5N1. Vaksin DNA adalah lebih selamat jika dibandingkan dengan vaksin tradisional seperti vaksin berasaskan virus yang dibunuh, lebih jimat kos pengeluaran dan penyimpanan secara relatif, dan mempunyai potensi untuk imunisasi serentak terhadap antigen atau pelbagai patogen. Inokulasi vaksin DNA telah menunjukkan rangsangan tindakbalas imun, termasuk kedua-dua gerak balas humor dan sel. Walaupun vaksin DNA menawarkan pelbagai kelebihan, antara kekurangan utama adalah
kegagalan untuk merangsang keimunan yang kuat dan vaksinasi tidak dapat dijalankan secara besar-besaran dalam ayam. Oleh itu, terdapat keperluan untuk membangunkan sistem penyampaian dan/atau adjuvan yang lebih berkesan. Dalam kajian ini, *S. typhimurium* strain SV4088 dan sintesis menggunakan teknologi mesra alam partikel nano perak (AgNP) telah digunakan sebagai pembawa untuk vaksin DNA ekspresi gen H5 (pcDNA3.1/H5) daripada AIV A/Ck/Malaysia/5858/04 (H5N1). Keselamatan dan keimunan formulasi vaksin DNA tersebut telah dinilai berdasarkan kajian sitotoksitisiti, gerak balas imun humor dan sel serta penghasilan sitokin.

Salmonella enterica sv. *typhimurium* (*S. typhimurium*) strain SV4088 merupakan mutan berganda (Dam- and phoP-) diperolehi daripada jenis liar *S. typhimurium* strain SL1344, telah digunakan sebagai pembawa untuk vaksin DNA H5, pcDNA3.1/H5 secara oral. Sel anak ayam primer daripada telur ayam berembrio 18 hari bebas-patogen-khusus (SPF) telah digunakan untuk menentukan tahap ekspresi sitokin selepas jangkitan secara *in-vivo* dengan *S. typhimurium* yang hidup dan mati bagi strain SV4088 yang dilemahkan dan strain jenis liar SL1344, masing-masing. *S. typhimurium* SL1344 yang hidup menunjukkan ekspresi yang kuat bagi sitokin pro-inflamasi (*GM-CSF, IL-1β, TGF-β, TNFSF13B, IL-12β, IL-6 and IL-8*), Th1 (*IFN-γ, IL-2, IL-15, IL-18*) and Th2 (*IL-4, IL-10*) daripada sel anak ayam primer. Walaupun *S. typhimurium* SV4089 yang dilemahkan, juga dapat merangsangkan semua sitokin yang dikaji tetapi tahap ekspresi secara ketaraannya adalah 1.3 hingga 28 kali lebih rendah dibandingkan dengan jenis liar. Tidak seperti strain yang dilemahkan dan jenis liar, jangkitan dengan *Salmonella* yang dibunuh menunjukkan sedikit atau tiada rangsangan ekspresi sitokin pro-inflamasi (*IL-8*), Th2 (*IL-10, IL-4*) and Th1 (*IL-18*). Plasmid DNA pcDNA3.1/H5 juga telah diformulasi menggunakan partikel
nano perak (AgNP) menggunakan kaedah sintesis mesra alam dengan polietilin glikol (PEG). AgNP telah berjaya disintesiskan melalui sebaran seragam dalam julat saiz di antara 4-18 nm dengan saiz purata 11 nm. Sitotoksisiti AgNP yang disediakan masing-masing dikaji secara in vitro dan in vivo dengan menggunakan sel MCF-7 dan ekspresi sitokin. Pada kepekatan -5 log AgNP, tiada kesan sitotoksisiti dapat dikesan dalam sel MCF-7 dengan 9.5% kematian sel berbanding kepada kawalan. Anak ayam SPF berumur 1 hari yang diimunisasi secara oral dengan partikel nano mengandungi 10 μl pcDNA3.1/H5 (2000 ng/mL) dan 40 μl AgNP (3.7×10² μg Ag) tidak menunjukkan sebarang manifestasi klinikal.

Potensi *S. typhimurium* SV4089 yang dilemahkan sebagai pembawa vaksin DNA dalam ayam muda telah diuji melalui imunisasi dalam anak ayam SPF yang baru menetas secara oral dengan 10⁹ CFU *Salmonella*. Tiada kematian serta kesan-kesan sampingan yang ditemui selepas imunisasi dengan strain yang dilemahkahkan ini. Bakteria hidup dapat dikesan 3 hari selepas inokulasi melalui plating, fluorescent in situ hybridization (FISH) and tindak balas rantai polimerasi (PCR) dari hati, limpa and sekum. Analisis sitometri aliran sel darah periperi mononuklear (PBMC) ayam yang diinokulasi dengan *Salmonella* yang dilemahkan secara oral, tidak menunjukkan sebarang respon sel CD3⁺/CD4⁺ dan CD3⁺/CD8⁺ yang ketara. Tanpa mengira tempoh, imunisasi ayam dengan strain *Salmonella* yang dilemahkan menunjukkan ekspresi IL-1β, IL-6, TNFSF13B (sitokin pro inflamasi) dan IL-15, IL-18 and IL-12β (sitokin Th1), walaupun tiada perubahan yang ketara direkod dalam eksperimen sepanjang 35 hari. Sampel serum yang dikumpul dari kumpulan imunisasi melalui intraotot (IM) mencatatkan titer HI yang rendah, manakala ayam yang diimunisasi dengan *S. typhimurium*/pcDNA3.1/H5 atenuat dan AgNP/pcDNA3.1/H5 menunjukkan peningkatan antibodi yang ketara terhadap H5 pada hari ke-
14 selepas imunisasi. Purata titer antibodi yang tertinggi dikesan pada hari ke-35 selepas imunisasi melalui IM, kumpulan yang diimunisasi dengan *S. typhimurium*/pcDNA3.1/H5 atenuat dan AgNP/pcDNA3.1/H5 adalah 4.0±2.8, 51.2±7.5, and 51.2±7.5, masing-masing.

S. typhimurium/pcDNA3.1/H5 atenuat dan AgNP/pcDNA3.1/H5 juga merangsang sel CD4\(^+\) dan CD8\(^+\) T pada 20.5±2.0 % (CD4\(^+\)), 22.9±1.9 % (CD8\(^+\)) dan 7.5±2.0 % (CD4\(^+\)), dan 20±1.9 % (CD8\(^+\)) masing-masing, dalam ayam seawal hari ke-14 selepas imunisasi. Sementara itu, sel CD4\(^+\) dan CD8\(^+\) T dalam ayam yang diimunisasikan melalui IM adalah sangat rendah, iaitu 5.9±0.9 and 8.5±1.3%, masing-masing. Tanpa mengira tempoh, imunisasi ayam dengan *S. typhimurium*/pcDNA3.1/H5 yang dilemahkan meningkatkan ekspresi IL-1β, IL-6, TNFSF13B, TGF-β, IL-12β, IL-15 dan IL-18 walaupun tiada perbezaan yang ketara direkodkan dalam ayam yang diimunisasi secara IM. Ayam yang diimunisasi dengan AgNP/pcDNA3.1/H5 juga menunjukkan peningkatan pada ekspresi sitokin yang sama kecuali IL-6 dan TNFSF13B. Tiada perbezaan yang ketara telah direkodkan dalam ayam yang disuntik dengan AgNP, dan AgNP/pcDNA3.1.

Oleh itu, pemberian tuggal *S. typhimurium* yang mengandungi pcDNA3.1/H5 dan AgNP/pcDNA3.1/H5 secara oral boleh merangsang antibodi yang kuat, sel T dan respon sitokin Th1 terhadap virus selsema burung dalam ayam. Kajian ini telah mengetengahkan mak umat bermakna bagi kajian selanjutnya untuk menentukan efikasi vaksin DNA dalam mengaruh pelindungan terhadap cabaran dengan virus H5N1 virulen.
ACKNOWLEDGEMENTS

I would like to thank all those who have taken upon themselves, as a personal goal or as a matter of duty, to provide nourishment and guidance academically or otherwise, that ultimately has led to this thesis.

First, I would like to express my very special thank to my supervisor Prof. Dr. Abdul Rahman bin Omar, for opening his doors to me both day and night towards the successful completion of my thesis. I would also like to thank for his brilliant supervision, encouragement, and guidance right from the conceptual stage to the completion of this thesis.

I am also thankful to Prof. Dr. Aini Ideris and Assoc. Prof. Dr. Zunita Binti Zakaria, my co-supervisors for their help, constructive criticism and guidance, which have greatly benefited me.
I certify that an Examination Committee has met on to conduct the final examination of Seyed Davoud Jazayeri on his Doctor of Philosophy entitled "Development of Oral Avian Influenza Virus Subtype H5 DNA Vaccines Using Attenuated *Salmonella typhimurium* and Silver Nanoparticles as Carriers" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are follows:

Chairman, PhD
Professor
Faculty of Graduate Studies
Universiti Putra Malaysia
(Chairman)

Examiner 1, PhD
Professor
Faculty of Graduate Studies
Universiti Putra Malaysia
(Internal Examiner)

Examiner 2, PhD
Professor
Faculty of Graduate Studies
Universiti Putra Malaysia
(Internal Examiner)

External Examiner, PhD
Professor
Faculty of Graduate Studies
Universiti Putra Malaysia
(External Examiner)

BUJANG BIN KIM HUAT, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Abdul Rahman bin Omar, PhD
Professor
Institute of Bioscience
Universiti Putra Malaysia
(Chairman)

Aini Ideris, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Zunita Binti Zakaria, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or other institutions.

SEYED DAVOUD JAZAYERI
Date: 10 February 2012
TABLE OF CONTENTS

ABSTRACT	ii
ABSTRAK	vi
ACKNOWLEDGEMENTS	x
APPROVAL	xi
DECLARATION	xiii
LIST OF TABLES	xix
LIST OF FIGURES	xx

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

- 2.1 Avian influenza virus
 - 2.1.1 Avian influenza A classification
- 2.2 Host immune response against influenza
 - 2.2.1 Avian immune response against influenza
- 2.3 Influenza vaccines
 - 2.3.1 Inactivated vaccines
 - 2.3.2 Cell culture vaccines
 - 2.3.3 Live attenuated influenza vaccines
 - 2.3.4 Live recombinant vectored based vaccine
 - 2.3.5 Reverse genetics vaccine
 - 2.3.6 DNA vaccine
- 2.4 Immunology of DNA vaccines
 - 2.4.1 Immune mechanism
 - 2.4.2 Mechanism of antigen presentation
 - 2.4.3 Role of cytokines in DNA vaccines
 - 2.4.4 Humoral immune response
 - 2.4.5 Cell-mediated immune response
- 2.5 Advantages and limitations of DNA vaccines
 - 2.5.1 Advantages
 - 2.5.2 Disadvantage and risks of DNA vaccines
 - 2.6 Routes of administration for DNA vaccine delivery
- 2.7 Live attenuated bacteria as potential carrier for DNA vaccine
 - 2.7.1 *L. monocytogenes* and *Shigella* spp
 - 2.7.2 Lactic acid bacteria (LAB)
 - 2.7.3 Bacteriophage
- 2.8 Characterization of *Salmonella*
 - 2.8.1 *Salmonella* as vaccine delivery system
- 2.9 *Salmonella* as carrier for oral DNA vaccine delivery
 - 2.9.1 *Salmonella typhimurium*
2.9.2 *Salmonella typhimurium* mutation

2.10 Nanotechnology

2.10.1 Nanoparticles applications

2.10.1.1 Polymer based nanoparticles

2.10.1.2 Metal based nanoparticles

2.11 Application of silver nanoparticles

2.11.1 Application of Ag in animal feed and drug formulation

2.12 Green synthesis of AgNPs

2.13 Mechanisms of NP based gene or DNA delivery systems

3.1 General procedures

3.2 Attenuated and wild type of *S. typhimurium*

3.3 Media and antibiotics

3.3.1 Antibiotics

3.3.2 Media

3.3.2.1 Luria-Bertani

3.3.2.2 Luria bertani agar (LBA)

3.3.2.3 Luria bertani broth (LBB)

3.3.2.4 Xylose-Lysine-Tergitol4 Agar (XLT4)

3.4 *Salmonella* culture conditions

3.5 Storage of stock cultures

3.6 Estimation of *Salmonella* cell concentration

3.7 Cultivation of *Salmonella*

3.8 Small-scale genomic DNA extraction

3.9 Spectrophotometric analysis of DNA

3.10 PCR amplifications of attenuated *Salmonella*

3.11 Agarose gel electrophoresis

3.12 Morphological examination of *Salmonella* using transmission electron microscopy

3.13 Maintenance and storage of mammalian cell lines

3.14 Invasion assay of *Salmonella* by infection of eukaryotic cells

3.15 Fluorescent *in situ* hybridization (FISH) of *Salmonella*

3.16 Chicken primary cell culture

3.17 Cell stimulation assay of primary cells with killed and live *Salmonella*

3.18 Avian influenza virus HA, NP and NA genes

3.19 Small scale plasmid DNA extraction using Qiaprep mini spin kit

3.20 Transformation of pcDNA3.1 based plasmid into *S. typhimurium*

3.21 PCR amplification

3.21.1 Primer design

3.21.2 PCR for determining optimal annealing temperature
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.21.3</td>
<td>PCR for screening of recombinant plasmids</td>
<td>63</td>
</tr>
<tr>
<td>3.22</td>
<td>In situ detection of H5, N1 and NP in Salmonella</td>
<td>63</td>
</tr>
<tr>
<td>3.22.1</td>
<td>DNA probes design</td>
<td>63</td>
</tr>
<tr>
<td>3.23</td>
<td>In vitro stability of the plasmid encoding H5 gene in S. typhimurium</td>
<td>64</td>
</tr>
<tr>
<td>3.24</td>
<td>Animal experimentation trials</td>
<td>64</td>
</tr>
<tr>
<td>3.24.1</td>
<td>Preparation of Salmonella inoculum</td>
<td>64</td>
</tr>
<tr>
<td>3.24.2</td>
<td>Bacteriological analysis of SPF chickens</td>
<td>65</td>
</tr>
<tr>
<td>3.24.3</td>
<td>In vivo trial</td>
<td>65</td>
</tr>
<tr>
<td>3.24.4</td>
<td>Inoculation of SPF chickens with attenuated Salmonella</td>
<td>66</td>
</tr>
<tr>
<td>3.24.5</td>
<td>Colonization of Salmonella in organs and plasmid stability</td>
<td>67</td>
</tr>
<tr>
<td>3.25</td>
<td>PCR detection of Salmonella in target organs after inoculation</td>
<td>68</td>
</tr>
<tr>
<td>3.26</td>
<td>Monitoring of Salmonella in infected chickens by FISH</td>
<td>68</td>
</tr>
<tr>
<td>3.27</td>
<td>Flow cytometry analysis of T cell subsets</td>
<td>68</td>
</tr>
<tr>
<td>3.27.1</td>
<td>Ficoll gradient separation of PBMCs from blood</td>
<td>69</td>
</tr>
<tr>
<td>3.27.2</td>
<td>Immunostaining of PBMC</td>
<td>69</td>
</tr>
<tr>
<td>3.28</td>
<td>Blood and sera collection</td>
<td>70</td>
</tr>
<tr>
<td>3.29</td>
<td>Haemagglutination (HA) and haemagglutination inhibition (HI) tests</td>
<td>70</td>
</tr>
<tr>
<td>3.29.1</td>
<td>H5N2 avian influenza virus</td>
<td>70</td>
</tr>
<tr>
<td>3.29.2</td>
<td>Preparation of 0.5% chicken red blood cells</td>
<td>70</td>
</tr>
<tr>
<td>3.29.3</td>
<td>HA test</td>
<td>71</td>
</tr>
<tr>
<td>3.29.4</td>
<td>HI test</td>
<td>71</td>
</tr>
<tr>
<td>3.30</td>
<td>Vaccination of chickens with Salmonella/pcDNA3.1 and Salmonella/pcDNA3.1/H5</td>
<td>72</td>
</tr>
<tr>
<td>3.30.1</td>
<td>Vaccine preparation</td>
<td>72</td>
</tr>
<tr>
<td>3.30.2</td>
<td>Inoculation of chickens against H5 by using attenuated Salmounella</td>
<td>72</td>
</tr>
<tr>
<td>3.31</td>
<td>Stability of plasmid in target organs</td>
<td>73</td>
</tr>
<tr>
<td>3.32</td>
<td>Flow cytometry study of T cells in vaccinated chickens</td>
<td>73</td>
</tr>
<tr>
<td>3.33</td>
<td>HI test</td>
<td>73</td>
</tr>
<tr>
<td>3.34</td>
<td>Large-scale preparation of plasmid DNA</td>
<td>73</td>
</tr>
<tr>
<td>3.35</td>
<td>DNA immunizations of chickens via IM injection</td>
<td>74</td>
</tr>
<tr>
<td>3.36</td>
<td>Flow cytometry and HI test</td>
<td>75</td>
</tr>
<tr>
<td>3.37</td>
<td>Synthesis of AgNP by using moderated temperature</td>
<td>75</td>
</tr>
<tr>
<td>3.38</td>
<td>Size, shape and size distribution of AgNP</td>
<td>76</td>
</tr>
<tr>
<td>3.39</td>
<td>Cytotoxic assay of AgNP against mammalian cells</td>
<td>76</td>
</tr>
<tr>
<td>3.39.1</td>
<td>Cell collection</td>
<td>76</td>
</tr>
<tr>
<td>3.39.2</td>
<td>In vitro multiplexed cytotoxic assay of AgNP</td>
<td>77</td>
</tr>
<tr>
<td>3.40</td>
<td>Plasmid and plasmid purification</td>
<td>77</td>
</tr>
<tr>
<td>3.41</td>
<td>Spectrophotometric and gel analysis of DNA</td>
<td>78</td>
</tr>
<tr>
<td>3.42</td>
<td>Preparation of plasmid DNA/AgNP complexes as oral vaccine</td>
<td>78</td>
</tr>
<tr>
<td>3.43</td>
<td>Fluorescence in situ hybridization</td>
<td>78</td>
</tr>
<tr>
<td>3.44</td>
<td>DNA band retardation analysis</td>
<td>79</td>
</tr>
<tr>
<td>3.45</td>
<td>Determination of NPs size and surface charge by zeta potential</td>
<td>79</td>
</tr>
<tr>
<td>3.46</td>
<td>TEM analysis of pcDNA3.1/H5 coated with AgNP</td>
<td>79</td>
</tr>
<tr>
<td>3.47</td>
<td>Vaccination of chickens against H5 by using AgNP/pcDNA3.1/H5</td>
<td>80</td>
</tr>
<tr>
<td>3.48</td>
<td>Flow cytometry study of T cells and HI test</td>
<td>80</td>
</tr>
<tr>
<td>3.49</td>
<td>Total RNA preparation</td>
<td>80</td>
</tr>
</tbody>
</table>

xvi
4 RESULTS AND DISCUSSION
4.1 Characterisation of Salmonella colony on XLT4
4.2 Morphological analysis of attenuated S. typhimurium via transmission electron microscopy
4.3 PCR amplification of Salmonella
4.4 Analysis of Salmonella by FISH
4.5 Verification of S. typhimurium harboring H5, N1 and NP gene
4.5.1 Ampicillin resistant of transfected Salmonella
4.5.2 PCR screening of H5, N1 and NP form Salmonella after transfection
4.5.3 Fluorescent in situ hybridization
4.6 In vitro stability of pcDNA3.1/H5, N1, NP and pcDNA3.1 in S. typhimurium
4.7 Feed and feeding condition
4.8 In vitro invasion assay of attenuated Salmonella into mammalian cells
4.9 In vivo trial of attenuated Salmonella in chicken
4.9.1 Colonization of attenuated S. typhimurium into target organs
4.9.2 In situ hybridization of homogenized tissue specimens
4.9.3 PCR amplification of Salmonella from homogenized infected organs
4.9.4 PCR amplicons of H5 from homogenized infected organs
4.10 Silver nanoparticle (AgNP) preparation
4.11 In vitro cytotoxic assay of AgNP
4.12 Preparation of plasmid AgNP/pcDNA3.1/H5 complexes
4.13 Zeta potential study
4.14 Determination of NP size by transmission electron microscopy
4.15 Analysis of coated pcDNA3.1/H5 with AgNP by FISH
4.16 Effect of different DNA vaccination routes on HA antibody response
4.16.1 Antibody response elicited by Salmonella
4.16.2 Antibody response in IM vaccinated chickens
4.16.3 Antibody response elicited by Salmonella/pcDNA3.1/H5
4.16.4 Antibody response elicited by AgNP/pcDNA3.1/H5
4.17 Flow cytometry study
4.18 Flow cytometric analysis of T cell after inoculation of Salmonella
4.19 Flow cytometric analysis of T cell after inoculation of Salmonella/pcDNA3.1/H5
4.20 Flow cytometric analysis of T cell after inoculation of AgNP/pcDNA3.1/H5
4.21 Total RNA isolation from spleen
4.22 Gene expression study using GeXP system
4.23 Multiplex gene expression profiling of chicken cytokines
4.24 *In vitro* cytokines expression of primary chicken cells infected with *Salmonella* 147
4.25 Gene expression analysis of immunized chickens against H5 155
 4.25.1 IM injection 155
 4.25.2 Via orally by *Salmonella* 156
 4.25.3 *Salmonella*/pcDNA3.1/H5 160
 4.25.4 AgNP/pcDNA3.1/H5 164
4.26 Gene expression analysis of inoculated chickens with AgNP 165

5 CONCLUSIONS AND FUTURE RECOMMENDATIONS 169

REFERENCES 171
LIST OF PUBLICATION 199