POTENTIAL ANTI-CANCER PROPERTIES OF BACTERIOCIN UL4 FROM
Lactobacillus plantarum IN RATS INDUCED WITH COLON CANCER

NORAINA BINTI MUHAMAD ZAKUAN

IB 2011 9
POTENTIAL ANTI-CANCER PROPERTIES OF BACTERIOCIN UL4 FROM
Lactobacillus plantarum IN RATS INDUCED WITH
COLON CANCER

By

NORAINA BINTI MUHAMAD ZAKUAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra
Malaysia, in Fulfilment of the Requirement for the Degree of Master of
Science

October 2011
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the Degree of Master of Science

POTENTIAL ANTI-CANCER PROPERTIES OF BACTERIOCIN UL4 FROM Lactobacillus plantarum IN RATS INDUCED WITH COLON CANCER

By

NORAINA BINTI MUHAMAD ZAKUAN

October 2011

Chairman : Latifah Saiful Yazan, PhD
Faculty : Institute of Bioscience

Colorectal cancer (CRC) is the fourth and the third most common cancer in men and women worldwide, respectively. Despite improvements in the treatment modalities of CRC such as surgery, radiotherapy and chemotherapy, all of them especially chemotherapy can result in severe side effects. Thus, more specific and effective treatment needs to be developed to improve and add to the available ones. Currently, much attention has been directed towards the development of natural or natural product-based anticancer agents that are believed to have lesser side effects. Among those are probiotics and their metabolites, and prebiotics. Bacteriocin UL4 (UL4) is a metabolite from Lactobacillus plantarum that showed antitumor promoting activities in mice induced with skin cancer. It was also demonstrated that postweaning rats fed with UL4 had a lower blood cholesterol concentration. This study was carried out not only to determine the anti-colorectal cancer properties of UL4, but also its immunomodulatory activities. Briefly,
Sprague Dawley male rats were injected subcutaneously with azoxymethane (AOM) for two subsequent weeks (15mg/kg/week) to induce colorectal cancer. The animals were fed with different percentages of UL4 (0.25%, 0.5% and 0.75% of UL4 (w/w)) added into drinking water at week 26, once daily for 12 weeks. The positive (with cancer) and negative control group (normal rats, without cancer) were also included. Upon completion, the animals were sacrificed. The colon, spleen and thymus were removed. Immune cell suspensions were prepared from spleen and thymus of rats. The regional distribution of aberrant crypt foci (ACF) at the proximal, medial and distal part was histopathologically evaluated following hematoxylin and eosin staining. In further classification of ACF into hyperplasia without dysplasia, mild to moderate dysplasia and severe dysplasia, the number of ACF in all classifications reduced significantly in group treated with 0.5 and 0.75% of UL4 as compared to the PC group. The incidence of tumor was also found to decrease significantly in all UL4-treated groups as compared to the PC group (p>0.05). In concordance with the reduced incidence of ACF and tumor, expression of β-catenin decreased significantly in all UL4-treated groups as compared to PC group. Results showed that effects of UL4 on the incidence of tumor and on the expression of β-catenin were dose-independent. The immunomodulatory properties of UL4 were determined based on the level of several cytokines (IFN-γ, TNF-α, IL-12 and IL-5). The level of studied cytokines (IFN-γ, TNF-α and IL-5) except for IL-12 in serum, increased significantly (p<0.05) in all UL4-treated groups as compared to the PC group. In general, the level of cytokines studied (IFN-γ, TNF-α, IL-12 and IL-5) increased significantly in groups treated with 0.5% and 0.75% of UL4 in both spleen and thymus cells as
compared to the PC group. Effects of UL4 on the level of studied cytokines seem to be dose-independent. As a conclusion, UL4 reduced the number of tumor and the expression of β-catenin in rats induced with colorectal cancer. UL4 also enhanced the production of IFN-γ, TNF-α, IL-12 and IL-5, the cytokines that are crucially involved and play a significant role in inhibition of colon carcinogenesis. Therefore, UL4 has potential as an anti-colorectal cancer agent possibly by modulating the immune responses of patients to fight cancer.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

POTENSI CIRI-CIRI ANTI KANSER BACTERIOCIN UL4 DARIPADA Lactobacillus plantarum DALAM TIKUS YANG DIARUH DENGAN KANSER USUS BESAR

Oleh

NORAINA BINTI MUHAMAD ZAKUAN

October 2011

Pengerusi : Latifah Saiful Yazan, PhD
Fakulti : Institut Biosains

plantarum yang menunjukkan aktiviti anti-penggalak tumor dalam mencit yang diaruahkan kancer kulit. Ia juga menunjukkan bahawa tikus pascapenyapihan yang diberi UL4 mempunyai kepekatan kolesterol darah yang lebih rendah. Kajian ini dijalankan bukan hanya untuk menentukan ciri-ciri anti-kanser usus besar UL4, tetapi juga ciri-ciri modulatori imunnya. Secara ringkasnya, tikus jantan Sprague Dawley telah disuntik secara subkutaneus dengan azoxymethane (AOM) untuk 2 minggu berturut-turut (15mg/kg/minggu) untuk mengaruh kanser usus besar. Tikus kemudiannya diberi minum UL4 dengan peratusan yang berbeza (0.25%, 0.5% dan 0.75% UL4 (w/w)) pada minggu ke 26, sekali sehari selama 12 minggu. Kumpulan kawalan positif (dengan kanser) dan kumpulan kawalan negatif (tikus normal, tanpa kanser) turut dimasukkan. Pada akhirnya, tikus dikorbankan. Kolon, limpa dan timus tikus diambil. Ampaiian sel imun daripada limpa dan timus tikus disediakan. Pengagihan fokus kripta aberan (ACF) mengikut bahagian iaitu proksimal, medial dan distal telah dinilai secara histopatologi berikut pewarnaan dengan hematoksilin dan eosin. Dalam klasifikasi lanjutan kepada hiperplasia tanpa displasia, displasia sedikit hingga sederhana dan displasia yang teruk, bilangan ACF bagi ketiga-tiga pengelasan berkurang secara signifikan dalam kumpulan yang dirawat dengan 0.5% dan 0.75% UL4 berbanding kumpulan PC. Kejadian tumor juga didapati berkurang secara signifikan dalam kesemua kumpulan rawatan UL4 berbanding kumpulan PC (p<0.05). Selaras dengan pengurangan kejadian tumor dan penzahiran β-katenin berkurang secara signifikan di kesemua kumpulan rawatan UL4 berbanding kumpulan PC. Keputusan menunjukkan kesan UL4 terhadap kejadian tumor dan penzahiran β-catenin tidak bergantung kepada dos. Ciri-ciri modulatori imun UL4 ditentukan berdasarkan
kepada aras beberapa sitokin (IFN-γ, TNF-α, IL-12 dan IL-5). Aras sitokin yang
dikaji (IFN-γ, TNF-α dan IL-5) kecuali IL-12 dalam serum, meningkat secara
signifikan (p<0.05) dalam kesemua kumpulan rawatan UL4 berbanding kumpulan
PC. Secara amnya, aras sitokin yang dikaji (IFN-γ, TNF-α, IL-12 dan IL-5)
meningkat secara signifikan dalam kumpulan yang dirawat dengan 0.5% dan
0.75% UL4 dalam kedua-dua sel limpa dan timus berbanding kumpulan PC. Kesan
UL4 ke atas aras sitokin yang dikaji kelihatan tidak bergantung kepada dos.
Sebagai kesimpulan, UL4 mengurangkan bilangan tumor dan penzahiran β-katenin
dalam tikus yang diaruh dengan kanser usus besar. UL4 juga didapati
meningkatkan penghasilan IFN-γ, TNF-α, IL-12 dan IL-5, sitokin yang terlibat
secara kritikal dan memainkan peranan yang signifikan dalam perencatan
karsinogenesis usus besar. Oleh itu, UL4 dilihat berpotensi sebagai agen anti-
kanser usus besar berkemungkinan melalui modulatori sistem imun untuk
melawan kanser.
ACKNOWLEDGEMENTS

In the name of Allah, the Most Benevolent and the Most Merciful. Alhamdulillah, praise to Allah the Almighty for giving me the strength to complete my research and this thesis. First of all, I wish to express my appreciation and sincere gratitude to my supervisor, Dr. Latifah Saiful Yazan, for her guidance, assistance and advice throughout this project. I would like to thank my co-supervisors, Assoc. Prof. Dr. Foo Hooi Ling and Dr. Noorjahan Banu Mohamed Alitheen from Faculty of Biotechnology and Biomolecular Sciences, Prof. Dr. Mohd Hair Bejo from Faculty of Veterinary Medicine, and Assoc. Prof. Dr. Saidi Moin from Faculty of Medicine and Health Sciences, Universiti Putra Malaysia for their guidance and advice to complete the research.

Special thanks to my beloved husband, Kamarul Zaidi Abd Ghani, for his understanding and unconditional morale support, and to the apple of my eye, my daughter, Nur Fatin Adriana. I am grateful to my family for their words of encouragement when I need them most.

My sincere gratitude expressed to all staff of the Animal Experimental Unit, the Laboratory of Histology and Hematology, Faculty of Medicine and Health Sciences, the Laboratory of Molecular Biomedicine, and the Cancer Research UPM-MAKNA, Institute of Bioscience for their great help kindly allowing me to get access to the facilities.
Finally, I would also like to thank all my friends especially Armania Nurdin, Noreen Husain, Hisyam Abdul Hamid, Zulfahmi Said, Norsyafini Ishak, Norazalina Saad, Foo Jhi Biau and Ng Wei Keat for their support and assistance throughout this research.
I certify that an Examination Committee has met on date of viva voce to conduct the final examination of Noraina binti Muhamad Zakuan on her Master of Science thesis entitled **“Potential Anti-Cancer Properties of Bacteriocin UL4 from *Lactobacillus plantarum* in Rats Induced with Colon Cancer”** in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The Committee recommends that the student be awarded the Master of Science.

Members of the Examination Committee were as follows:

Associate Professor Dr. Sabrina Sukardi
Department of Biomedical Sciences
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Professor Dr. Raha Abdul Rahim
Department of Cell and Molecular Biology
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Associate Professor Dr. Hairuszah Ithnin
MD(UKM), M Path (UKM), AM (Malaysia)
Consultant Pathologist
Department of Pathology
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Professor Dato’ Dr. Wan Zurinah Wan Ngah
Deputy Director
UKM Medical Molecular Biology Institute (UMBI)
Universiti Kebangsaan Malaysia
Malaysia
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the Degree of Master of Science. The members of the Supervisory Committee were as follows:

Latifah Saiful Yazan, PhD
Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Foo Hooi Ling, PhD
Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Mohd Hair Bejo, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Noorjahan Banu Mohd Alitheen, PhD
Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Saidi Moin, PhD
Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously and is not concurrently submitted for any other degree at Universiti Putra Malaysia or at any other institution.

..........................

NORAINA BINTI MUHAMAD ZAKUAN

Date: 21 October 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td></td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xviii</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2. LITERATURE REVIEW</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>2.1 Cancer</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>2.2 Colorectal cancer</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>2.2.1 Epidemiology</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>2.3 Colorectal carcinogenesis</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2.3.1 Aberrant crypt foci (ACF)</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>2.3.1.1 Induction of colorectal cancer in animals</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>2.3.2 Wnt signaling pathway and colon cancer</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>2.3.3 β-catenin</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>2.4 Treatment for colorectal cancer</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>2.4.1 Fluoropyrimidines</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>2.4.1.1 Intravenous fluororacil</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>2.4.1.2 Oral fluoropyrimidines</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>2.4.2 Irinotecan</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>2.4.3 Oxaliplatin</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>2.4.4 Angiogenesis inhibitors</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>2.5.4.1 Bevacizumab</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>2.4.5 Epidermal growth factor receptor inhibitors</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>2.4.5.1 Cetuximab</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>2.4.5.2 Panitumumab</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>2.5 Prebiotics</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>2.5.1 Prebiotics and colorectal cancer</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>2.6 Probiotics</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>2.6.1 Probiotics and colorectal cancer</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>2.7 Lactic acid bacteria (LAB)</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>2.7.1 Lactobacillus plantarum</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>2.7.2 Bacteriocins</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>2.7.2.1 Anti-cancer effects of bacteriocins</td>
<td></td>
<td>35</td>
</tr>
</tbody>
</table>
2.7.3 Bacteriocin UL4 (UL4) 36
 2.7.3.1 Anti-cancer effects of UL4 36

2.8 The immune system 36
 2.8.1 Cytokines 38
 2.8.1.1 Interferon gamma (IFN-γ) 38
 2.8.1.1.1 Mechanisms of action of IFN-γ 40
 2.8.1.2 Tumor necrosis factor alpha (TNF-α) 41
 2.8.2.1.1 Mechanisms of action of TNF-α 42
 2.8.1.3 Interleukin 12 (IL-12) 43
 2.8.3.1.1 Mechanisms of action of IL-12 44
 2.8.1.4 Interleukin 5 (IL-5) 47

2.8.2 Role of the intestinal microbes towards immune system 47

2.9 Immunomodulation and cancer 50

3. MATERIALS AND METHODS 51
 3.1 Compound 51
 3.2 Chemicals and reagents 52
 3.3 In vivo Study 52
 3.3.1 Animals 52
 3.3.2 Induction of colorectal cancer and treatment with UL4 52
 3.3.3 Sample collection 53
 3.3.4 Processing of colon 53
 3.3.5 Histological analysis 53
 3.3.6 Histological classification of ACF 54
 3.3.7 Tumor assessment 55
 3.3.8 Immunohistochemical analysis of the expression of β-catenin 55
 3.4 Ex-vivo Study 57
 3.4.1 Preparation of rats spleen and thymus cells suspensions 57
 3.4.2 Trypan blue dye exclusion method 58
 3.4.3 Determination of level of cytokines in serum and culture supernatants 58
 3.4.3.1 Determination of level of cytokines in serum 58
 3.4.3.2 Determination of level of cytokines in culture supernatants 59
 3.4.3.2.1 Determination of level of IFN-γ 59
 3.4.3.2.2 Determination of level of TNF-α 61
 3.4.3.2.3 Determination of level of IL-12 and IL-5 62
 3.5 Statistical analysis 62
4. **RESULTS**

4.1 Effects of UL4 on the body weight of rats
4.2 Effects of UL4 on the severity of cancer
 4.2.1 Effects of UL4 on the regional distribution aberrant crypt foci (ACF)
 4.2.2 Effects of UL4 on morphology of ACF
4.3 Effects of UL4 on the number of total tumor, adenoma and adenocarcinoma
4.4 Effects of UL4 in the expression of β-catenin
4.5 Effects of UL4 on the level of cytokines
 4.5.1 Effects of UL4 on the level of IFN-γ, TNF-α, IL-5 and IL-12 in the serum
 4.5.2 Effects of UL4 on the level of IFN-γ in the spleen and thymus cells suspension
 4.5.3 Effects of UL4 on the level of TNF-α in the spleen and thymus cells suspension
 4.5.4 Effects of UL4 on the Level of IL-12 in the spleen and thymus cells suspension
 4.5.5 Effects of UL4 on the Level of IL-5 in the spleen and thymus cells suspension

5. **DISCUSSION**

6. **CONCLUSION**

7. **RECOMMENDATIONS**

REFERENCES

APPENDICES

BIODATA OF STUDENT