COST ESTIMATION MODEL FOR SECURE SOFTWARE DEVELOPMENT

NUR ATIQAH SIA ABDULLAH @ SIA SZE YIENG

FSKTM 2011 11
COST ESTIMATION MODEL FOR SECURE SOFTWARE DEVELOPMENT

By

NUR ATIQAH SIA ABDULLAH @ SIA SZE YIENG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

August 2011
DEDICATION

I want to dedicate this work to my beloved husband, Syed Mohd Ifandi Syed Jaafar, my two lovely daughters, Sharifah Nur Syuhada dan Sharifah Nur Syahadah, and my parents Joseph Sia Ming Moi and Chiong Siew Ding.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

COST ESTIMATION MODEL FOR SECURE SOFTWARE DEVELOPMENT

By

NUR ATIQAH SIA ABDULLAH @ SIA SZE YIENG

August 2011

Chair: Associate Professor Rusli bin Abdullah, PhD

Faculty: Faculty of Computer Science and Information Technology

Engineering security in software is now a high priority objective in many IS application especially for the banking and electronic commerce. Most of the commerce websites are forced to add on security coding to prevent them from web criminal. These are due to the poor coding and lacking in considering security during system development life cycle (SDLC). To build security into the applications or systems, it will substantially raise software costs. The existing software cost estimation (SCE) models are lacking in emphasis on the security coding or factors in estimating the software cost. Therefore, there is a need to have cost estimation model for the secured software in order to have more accurate estimation.

Some of the researchers have tried to extend COCOMO II by including security cost drivers. In this thesis, however, due to the security issues highlighted by Function Point Analysis (FPA), a Software Security Characteristics Model (SSCM) is proposed to be extended in the FPA to include the security costing.
To produce SSCM, two software security measurement metrics, which are Davis’s software security management and metric; and McGraw’s software security seven touch points, are considered to derive the security aspects according to SDLC. The security aspects are then cross-referenced with four common security standards. These standards include Information Technology (IT) Security Cost Estimation Guide, Common Criteria for Information Technology Security Evaluation, Open Web Application Security Project (OWASP), and Control Objectives for Information and related Technology (COBIT). These characteristics are then arranged according to the security aspects. As a result, SSCM, which consists of 48 characteristics, is developed.

To validate the model, a survey is setup to investigate the current practices in Multimedia Super Corridor (MSC) software houses in Klang Valley, Malaysia. The survey results are analyzed using Rasch Measurement Method. The results reveal a person spread of 5.52 logit with good Separation, G=3.64 and excellent Reliability of Cronbach-α = 0.97, which means the survey outcome is acceptable. With μ_{person} of 83.06% and the Person Mean = 1.59 ≥ 0.00; with significant of $p=0.05$, the SSCM are valid, relevant and implemented in current practices.

This validated SSCM is then corroborated through expert opinions in verifying the discarded characteristics. The final SSCM is used to extend the General System Characteristics (GSCs) in FPA by including two additional evaluation sheets, which are specified in calculating the security costing. The evaluation score for these sheets is based on the result of Rasch in the survey.
An online estimation tool is developed based on the SSCM and so called Extended FPA in an experiment. To evaluate the user acceptance towards this tool, a user acceptance model has been adapted based on three theoretical models, which are Technology Acceptance Model (TAM), Method Evaluation Model (MEM) and Part 3 ISO/IEC 14143 (ISO/IEC). This adapted model is the basic for the user acceptance questionnaire and hypotheses in the laboratory experiment. Besides, case studies are designed as experiment materials. This experiment is then carried out to test the user acceptance towards the Extended FPA compared to the IFPUG FPA. The respondents are trained with both FSM methods according to within-subject design. There are comparative analyses between two FSM methods in this experiment. From the user acceptance results, we can concluded that seven out of nine null hypotheses are rejected, which shows overall the responses to the post-task surveys suggested that Extended FPA is more consistent, easier to use, more useful and nevertheless is more likely to be used in the future.

As a conclusion, the results of this study are contributed in theoretical and practical aspect. For the theoretical aspect, several models and theories are integrated in a systematic way: SSCM, Research Design, and Empirical Studies.; while for the practical aspect, this study deals with current problem in the industry: the security costing for the secure software.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

MODEL ANGGARAN KOS UNTUK PEMBANGUNAN KESELAMATAN DALAM PERISIAN

Oleh

NUR ATIQAH SIA ABDULLAH @ SIA SZE YIENG

Ogos 2011

Pengerusi: Profesor Madya Rusli bin Abdullah, PhD
Fakulti: Fakulti Sains Komputer dan Teknologi Maklumat

Kejuruteraan keselamatan dalam perisian kini menjadi objektif utama dalam kebanyakan perisian terutamanya bagi perbankan dan perdagangan elektronik. Kebanyakan laman dagang terpaksa menambah kod keselamatan untuk menghindari daripada jenayah web. Ini adalah disebabkan oleh kekurangan kod keselamatan dan keprihatinan tentang keselamatan perisian semasa kitar hayat pembangunan sistem (SDLC). Untuk membina keselamatan ke dalam aplikasi atau sistem, ini semestinya akan meningkatkan kos perisian. Model anggaran kos perisian (SCE) yang sedia ada kurang menekankan kepada kod atau faktor keselamatan dalam menganggarkan kos perisian. Oleh itu, terdapat keperluan mewujudkan model anggaran kos untuk pembangunan keselamatan dalam perisian agar dapat membuat anggaran yang lebih tepat.

Beberapa penyelidik telah cuba untuk melanjutkan COCOMO II dengan memasukkan pemacu kos keselamatan. Walau bagaimanapun, dalam tesis ini, disebabkan isu-isu keselamatan yang diketengahkan oleh Analisis Fungsian Poin
(FPA), Model Ciri Keselamatan Perisian (SSCM) adalah dicadangkan untuk diperluaskan dalam FPA bagi merangkumi kos keselamatan.

Untuk mengesahkan model, satu kaji selidik dijalankan untuk menyiasat amalan semasa syarikat perisian Koridor Raya Multimedia (MSC) di Lembah Klang, Malaysia. Keputusan kaji selidik telah dianalisis menggunakan Kaedah Pengukuran Rasch. Keputusan mendedahkan penyebaran orang 5.52 logit dengan Pemisahan baik, G = 3,64 dan Kebolehpercayaan hebat daripada Cronbach-α = 0,97, yang bermaksud hasil kaji selidik yang boleh diterimapakai. Dengan μ\text{person} 83,06\% dan Min Responden = 1,59 ≥ 0,00; dengan signifikan p = 0,05, SSCM adalah sah, relevan dan yang dilaksanakan dalam amalan semasa.
SSCM yang telah disahkan kemudiannya disokong melalui pendapat pakar dalam mengesahkan ciri-ciri yang perlu disingkirkan. SSCM yang terakhir adalah digunakan untuk menambah Ciri-ciri Sistem Am (GSCs) di FPA termasuklah dua lembaran penilaian tambahan yang dinyatakan dalam mengira kos keselamatan. Skor penilaian lembaran ini adalah berdasarkan hasil Rasch dalam kaji selidik.

Sebagai kesimpulan, keputusan kajian ini menyumbang dalam aspek teori dan praktikal. Bagi aspek teori, beberapa model dan teori yang bersepadu dalam cara yang sistematik: SSCM, Reka Bentuk Penyelidikan dan Kajian Empirical, manakala
bagi aspek praktikal, ini tawaran belajar dengan masalah semasa dalam industri: keselamatan yang bernilai untuk perisian selamat.
ACKNOWLEDGEMENTS

First of all, I would like to thank Allah s.w.t for giving me the spiritual strength to finish this study. Besides, I would to express my special thank to my main supervisor, Assoc. Prof. Dr Rusli Abdullah for his fully support and encouragement during the study. I would also like to give my special thanks to Assoc. Prof. Hj. Mohd Hasan Selamat on his valuable critiques that brought a great influence on this study. I am also very grateful to Assoc. Prof. Dr. Azmi Jaafar for giving me lot guidance during the data analysis and results in this study.

I would like to give my special thanks to Mohd Faisal Ibrahim for guiding me during the preparation of VIVA and Norzilah Musa for supporting me spiritually. I would like to express my sincere appreciation to Mr Mohd Saidfudin Masodi for giving me professional consultancy on the performance measurement (Rasch model). His expertise helped me to complete the survey, data analysis and discussion. Besides, I would to thank all the people who were willing to participate during the survey, expert opinions, and laboratory experiment. The important parts of this study would not have been possible without the participation and cooperation of these people. Special thanks to Mr. Peter Sia Chin Yong for working with me and contributed ideas in developing the online estimation tool in this study.

Thanks to all the PhD and Master’s friends that provided me useful materials and references on the theoretical and empirical validation of software metrics and user acceptance models. Also thanks to the staffs for all their help and support during my study in Universiti Putra Malaysia. Thanks to Ministry of Higher Education
(Malaysia) and Universiti Teknologi MARA (UiTM) for financially supporting this study.

I want to give very special thanks to my husband, Syed Mohd Ifandi Syed Jaafar, for his love, support and encouragement throughout this study. Also thanks to my lovely daughters, Sharifah Nur Syuhada and Sharifah Nur Syahadah, for accompanying me all the nights I spent writing this thesis. Thanks to my dearest sister, Mary Sia Sze Hung, for being the babysitter for my daughters during the school holidays. Gratitude to my best friend, Kartini Rashid, who is always be my side regardless the worst or best situation. Last but not least, I have to thank my parents, Joseph Sia Ming Moi and Chiong Siew Ding, for giving me their fully loves and cares.

NUR ATIQAH SIA ABDULLAH @ SIA SZE YIENG
August 2011
I certify that a Thesis Examination Committee has met on 12 August 2011 to conduct the final examination of Nur Atiqah Sia Abdullah on her thesis entitled “Cost Estimation Model for Secure Software Development” in accordance with the Universities and University College Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Zuriati binti Ahmad Zulkarnain, PhD
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Chairman)

Abdul Azim bin Abd Ghani, PhD
Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Internal Examiner)

Rodziah binti Atan, PhD
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Internal Examiner)

Richard Lai, PhD
Associate Professor
Faculty of Science, Technology and Engineering
La Trobe University
Victoria, Australia
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 28 October 2011
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Rusli bin Abdullah, PhD
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Chairman)

Mohd Hasan bin Selamat, MPhi.
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

Azmi bin Jaafar, PhD
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

HASANAH MOHD. GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DE CLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

NUR ATIQAH SIA ABDULLAH @ SIA SZE YIENG

Date: 12 August 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>x</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background 1
1.2 Problem Statements 2
1.3 Research Questions 5
1.4 Research Objectives 6
1.5 Research Scopes 7
1.6 Research Methodology 8
1.7 Importance of Study 9
1.8 Organization of Thesis 10

2 LITERATURE REVIEW

2.1 Introduction 12
2.2 Software Measurement 12
2.3 Measurement Approaches 13
2.4 Types of Software Measure 13
2.4.1 Software Size Measures 15
2.4.2 Measurement Scales 16
2.5 Application of Software Measurement 18
2.6 Function Point Measure 19
2.7 Function Point Analysis 20
2.7.1 Function Point Components 21
2.7.2 Function Point Complexity Weights 22
2.7.3 Function Point General System Characteristics 23
2.7.4 Function Point Counting Procedure 25
2.7.5 Function Point Applications 26
2.8 Extended Function Point Analysis Techniques 27
2.8.1 Feature Points 27
2.8.2 Mark II Function Point and Model 28
2.8.3 3D Function Point 31
2.8.4 Full Function Point 32
2.8.5 COSMIC Full Function Point 32
2.9 Other Parametric Cost Estimation Techniques 33
 2.9.1 Putnam’s SLIM 33
 2.9.2 Boehm’s COCOMO II 34
 2.9.3 Banker’s Object Point 36
 2.9.4 Cleary’s Web Point 37
 2.9.5 Component Point 38

2.10 Limitations of Cost Estimation Models 41
 2.10.1 Security Cost and Its Effect on Software Cost Estimation 41
 2.10.2 Extension of COCOMO II with Security Concerns 43
 2.10.2.1 COSECMO 43
 2.10.2.2 Security Cost Driver 46
 2.10.2.3 Security Risk Analysis 48
 2.10.3 Evaluation of Cost Estimation Models with Security Concern 49

2.11 Software Security Measurement Metrics 52
 2.11.1 Software Security Management and Metric 53
 2.11.2 McGraw’s Software Security Seven Touch Points 53

2.12 Common Security Standards 55
 2.12.1 Information Technology Security Cost Estimation Guide 55
 2.12.2 Common Criteria for Information Technology Security Evaluation 57
 2.12.3 The Open Web Application Security Project 58
 2.12.4 Control Objectives for Information and related Technology 59

2.13 Summary 60

3 RESEARCH METHODOLOGY 62
 3.1 Introduction 62
 3.2 Research Methodology Description 62
 3.3 Software Security Characteristics Selection 64
 3.4 Instrument Construct for Survey 65
 3.4.1 Objective 66
 3.4.2 Hypothesis 66
 3.4.3 Sampling 67
 3.4.4 Measurement Instrument Setting 68
 3.4.5 Data Collection for Survey 69
 3.5 Rasch Analysis Method 69
 3.5.1 Person-Item Distribution Map 71
 3.5.2 Person Validity 72
 3.5.3 Items Validity and Suspected Items Identification 72
 3.5.4 Category Structure 73
 3.5.5 Ability Calculation 73
 3.6 Expert Opinions 74
 3.7 Experiment Construct 75
 3.7.1 Theoretical Models for User Acceptance 77
 3.7.1.1 The Technology Acceptance Model (TAM) 77
 3.7.1.2 The Method Evaluation Model (MEM) 78
 3.7.1.3 ISO/SEC 14143-3 Information technology – Software measurement – Functional size measurement 80

xvi
3.7.2 Adaptation of TAM, MEM and ISO/IEC in User Acceptance Models
3.7.3 Questions for User Acceptance Questionnaire
3.7.4 Experiment Research Questions
3.7.5 Variable Selection
3.7.6 Hypotheses Formulation
3.7.7 Comparative Evaluation of Extended FPA against IFPUG FPA
3.7.8 Selection of Subjects
3.7.9 Software Specification Requirements
3.7.10 Experiment Treatments
3.7.11 Experiment Operations
3.8 Summary

4 MODEL DESIGN AND DEVELOPMENT
4.1 Introduction
4.2 Software Security Characteristics Model Design
4.2.1 Integration for Software Security Measurement Metrics
4.2.2 Cross-reference Common Security Standards
4.2.3 Organization of Software Security Characteristics in SDLC
4.3 Extension of General System Characteristics
4.3.1 Software Security Characteristics as General System Characteristics
4.3.2 Degree of Influence
4.3.3 Calculation in General System Characteristics
4.4 System Design
4.4.1 System Specification
4.4.2 System Architecture
4.4.3 Modeling Process
4.4.3.1 Context Diagram
4.4.3.2 Decomposition Diagram
4.4.3.3 Data Flow Diagram
4.4.3.4 Entity Relationship Diagram
4.4.4 System Interfaces
4.5 Summary

5 RESULTS AND DISCUSSION
5.1 Introduction
5.2 Survey Analysis
5.2.1 Respondents Profile
5.2.2 Person-Item Distribution Map
5.2.3 Summary Statistics for Person and Item Measure
5.2.4 Person Measure Analysis
5.2.5 Item Measure Analysis
5.2.6 Item Polarity
5.2.7 Category Structure Calibration
5.2.8 Awareness for Security Characteristics
5.3 Expert Opinions Analysis
5.4 User Acceptance Testing Analysis
 5.4.1 Comparative Analysis of the Performance of the FSM Methods 144
 5.4.2 Comparative Analysis of the Likelihood of Adoption in Practice of the FSM Methods 148
 5.4.3 Analysis of the Acceptance of the Extended FPA 152
5.5 Threat Validity 154
5.6 Summary 156

6 CONCLUSIONS AND FUTURE WORKS 158
6.1 Introduction 158
6.2 Conclusions 158
 6.2.1 Design of the Software Security Characteristics 158
 6.2.2 Validation of the Software Security Characteristics Model 159
 6.2.3 Design a Tool to Analyze the Software Security Costing 160
 6.2.4 Validation of the Application of the Extended FPA in Experiment 161
 6.2.5 Summary of the Main Contributions 162
6.3 Future Works 163

REFERENCES 164
APPENDICES 171
BIODATA OF STUDENT 220
LIST OF PUBLICATIONS 221