MORPHOLOGICAL AND MOLECULAR SYSTEMATICS OF BULBOPHYLLUM THOU. IN PENINSULAR MALAYSIA

SHAHLA HOSSEINI

FS 2011 45
MORPHOLOGICAL AND MOLECULAR SYSTEMATICS OF BULBOPHYLLUM THOU. IN PENINSULAR MALAYSIA

SHAHLA HOSSSEINI

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA

2011
MORPHOLOGICAL AND MOLECULAR SYSTEMATICS OF BULBOPHYLLUM THOU. IN PENINSULAR MALAYSIA

By

SHAHLA HOSSEINI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia
In Fulfilment of Requirements for Degree of Doctor of Philosophy

October 2011
Dedicated

To Best Memory of my Mother
To my Father and my Brothers
To my Husband
Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy.

MORPHOLOGICAL AND MOLECULAR SYSTEMATICS OF BULBOPHYLLUM THOU. IN PENINSULAR MALAYSIA

By

SHAHLA HOSSEINI

October 2011

Chairperson: Associate Professor Rusea Go, PhD
Faculty: Science

The largest member of the subtribe Bulbophyllinae (Orchidaceae) has been defined as Bulbophyllum, a genus which forms a large, pantropical, and poorly studied group of orchids in Peninsular Malaysia. Based on this study, members of this large genus have undergone extreme reduction in number of species in the natural habitat and have acquired efficient adaptation to the canopy environment. In this study 57 Bulbophyllum taxa were collected and 48 species were identified to species level, whereas the other 9 species were not identified due to lack of flowering structure but they are separate individual species as confirmed by DNA sequences. The most widely accepted classification system is based exclusively on floral morphology, and no significant molecular studies of Bulbophyllum in Peninsular Malaysia have been done. To study the systematics of this genus, structural characters were used together with molecular evidence to generate molecular systematic hypotheses by
using PAUP* 4.0 b 10 and Mr Bayes 3.1.1. The structural portion of this study was performed using both qualitative and quantitative characters of rhizome, pseudobulb, leaf and flower. Phenetic and cladistic analyses were conducted for morphological data of 38 different species and molecular cladistic analyses has been carried out for the 57 taxa with parsimony, likelihood and Bayesian methods. Four nucleotide sequence data sets from two distinct genomes cpDNA genes (rbcL, matK, trnL-F) and nuclear gene (ITS) were used to construct independent cladograms of the Bulbophyllum taxa.

The morphological clustering of 11 sections of Bulbophyllum with high congruency corresponded with prior descriptions, with the following exceptions: species of sections Hirtula and Cirrhopetalum divided into two separate clusters. Morphological character analysis placed B. coniferum from section Globiceps inside section Aphanobulbon, and B. mutabile from section Aphanobulbon inside section Desmosanthes. Based on the quantitative results B. medusae was placed inside section Cirrhopetalum but qualitative characters have supported the status of this species inside section Desmosanthes which corresponded with the earlier classification. Cladistic analysis was highly congruent with phenetic result however grouping of the sections was much more corresponded with molecular data.

Separate parsimony analysis as well as combined Bayesian analysis of four gene regions except for rbcL, supported a monophyletic status (BP100, PP100) for 12 out of 13 sections of Peninsular Malaysian Bulbophyllum. The molecular results
gave strong evidence (BP90-100, PP100) that the generic status of section *Cirrhopetalum* could no longer be supported, as it was deeply embedded within the genus *Bulbophyllum*. This section was a sister group to section *Desmosanthes* in all the different analyses, so it cannot be considered as a separate genus. Section *Hirtula* was the only section with a paraphyletic status. It was divided into *B. dayanum* which is a sister to section *Careyana*; *B. hirtulum* and *B. limbatum* are sister group to section *Aphanobulbon*. The combined molecular data analysis confirmed the status of *B. medusae* as a species of section *Cirrhopetalum*. Significantly, the status of some species through clustering analysis obtained from structural characters was in congruence with the molecular analysis and the species grouping of sections *Sestochilus*, *Epicrianthes*, *Monilibulbus* and *Careyana* was similar with the combined molecular data analysis.

In this study, molecular systematics analysis had provided a robust estimation for the phylogenetic relationships of *Bulbophyllum* which suggested that the Internal Transcribed Spacer (ITS) and cpDNA markers (*matK* and *trnL-F*) with the exception of *rbcL* (with low level of resolution among species) are reliable markers for the phylogenetic studies of *Bulbophyllum* within the studied sections in Peninsular Malaysia.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah.

MORFOLOGI DAN MOLEKULAR SISTEMATIK BULBOPHYLLUM THOU. DI SEMENANJUNG MALAYSIA

Oleh

SHAHLA HOSSEINI

Oktober 2011

Pengerusi: Prof Madya Rusea Go, PhD
Fakulti: Sains

Ahli terbesar subtribe Bulbophyllinae (Orchidaceae) telah didefinisikan sebagai Bulbophyllum, genus yang merupakan kumpulan orkid yang besar, pantropika, dan kurang dikaji di Semenanjung Malaysia. Berdasarkan kajian ini, ahli-ahli genus yang besar ini telah mengalami penurunan melampau dari segi bilangan species di habitat semulajadi dan telah memperoleh adaptasi yang efisien terhadap persekitaran kanopi. Dalam kajian ini, 57 taksa Bulbophyllum telah dikumpul dan 48 spesies telah dikenalpasti nama ke peringkat spesies, manakala 9 lagi tidak dapat dikenalpasti kerana tidak mempunyai struktur bunga tetapi mereka adalah spesies yang berbeza berdasarkan jujukan DNA. Sistem klasifikasi yang paling diterima pakai adalah berdasarkan kepada morfologi bunga, dan tiada kajian molekul Bulbophyllum di Semenanjung Malaysia yang signifikan telah dilakukan. Untuk mengkaji sistematik genus ini, ciri-ciri struktur bersama bukti molekul telah
digunakan untuk membina hipotesis sistematik molekul dengan menggunakan PAUP * 4.0 dan Mr Bayesian. Bahagian struktur kajian ini dilakukan dengan menggunakan kedua-dua ciri kualitatif dan kuantitatif rizom, pseudobulb, daun dan bunga untuk 38 spesies yang berbeza. Phenetic and cladistic analyses were conducted for morphological data of 38 different species and molecular cladistic analyses has been carried out for the 57 taxa with parsimony, likelihood and Bayesian methods. Analisis Phenetic dan cladistic telah dijalankan bagi data morfologi 38 spesies yang berbeza dan molekul analisis cladistic telah dijalankan untuk taksa 57 dengan parsimoni, kesamaan dan Bayesian. Empat pasang data jujukan nukleotida daripada dua genom yang berbeza, cpDNA (rbcL, matK, trnL-F) dan gen nukleus (ITS) telah digunakan untuk membina cladograms bebas bagi taksa Bulbophyllum.

Pengelompokan morfologi daripada 11 seksyen Bulbophyllum dengan kongruensi tinggi didapat berkaitan dengan deskripsi sebelumnya, dengan pengecualian berikut: spesies dalam seksyen Hirtula dan Cirrhopetalum telah membentuk dua kelompok berasingan. Analisis berdasarkan ciri-ciri morfologi menempatkan B. coniferum dari section Globiceps ke dalam section Aphanobulbon dan B. mutabile dari section Aphanobulbon ke dalam section Desmosanthes. Berdasarkan hasil kuantitatif B. medusa telah dimasukkan ke dalam section Cirrhopetalum tetapi ciri-ciri kualitatif telah menyokong status spesies ini kekal di dalam section Desmosanthes dimana seperti yang dicadangkan dalam klasifikasi lama. Analisis
Cladistic adalah sangat sesuai dengan hasil phenetic bagaimanapun, perkumpulan bahagian adalah lebih sejajar dengan data molekul.

Analisis parsimoni berasingan daripada empat rantau gen kecuali rbcL, serta analisis Bayesian gabungan telah menyokong status monofiletik (BP100, PP100) untuk 12 daripada 13 seksyen Bulbophyllum di Semenanjung Malaysia. Hasil kajian molekul ini telah memberi bukti yang kukuh (BP90-100, PP100) bahawa status genera seksyen Cirrhopetalum tidak lagi disokong, kerana ia sangat jelas terkandung dalam genus Bulbophyllum. Section ini merupakan kumpulan saudara kepada section Desmosanthes dalam semua analisis yang berlainan, oleh yang demikian, ia tidak boleh dianggap sebagai genus yang berasingan. Section Hirtula adalah satu-satunya section dengan status parafiletik, dimana B. dayanum merupakan saudara seksyen Careyana; B. hirtulum dan B. limbatum merupakan kumpulan saudara untuk seksyen Aphanobulbon. Gabungan analisis data molekul mengesahkan status B. medusa sebagai spesies dalam seksyen Cirrhopetalum. Adalah nyata bahawa status beberapa spesies melalui hasil analisis pengelompokan yang diperolehi daripada ciri-ciri struktur adalah kongruensi dengan analisis molekul, dan pengelompokan spesies seksyen Sestochilus, Epicrianthes, Monilibulbus dan Careyana adalah serupa dengan gabungan analisis data molekul.

Dalam kajian ini, analisis sistematik molekul telah memberikan satu jangkaan yang tepat antara hubungan filogenetik dalam Bulbophyllum dan mencadangkan bahawa selain daripada rbcL (dengan kadar resolusi yang rendah antara spesies), Internal
Transcript Spacer (ITS) dan penanda cpDNA adalah merupakan penanda yang sesuai untuk kajian filogenetik Bulbophyllum dikalangan seksyen yang dikaji di Semenanjung Malaysia.
ACKNOWLEDGEMENTS

First and foremost, I would like to give grace to the Almighty God for sparing my life and for seeing me through the completion of this research work. I also wish to express my sincere appreciation and deep sense of gratitude to my supervisor Assoc. Prof. Rusea Go for her guidance, encouragement throughout the course of this research work. I would like to extend my gratitude to my supervisory committee, Assoc. Prof. Ahmad Ainuddin Nuruddin and Assoc. Prof. Faridah Qamaruz Zaman for their guidance and support on this research.

I am very grateful to Dr Christina Yong Seok Yien, who readily gave of her time to edit the molecular analysis section of this thesis and also thanks for her helpful advice.

I also would like to knowledge following institutions: Singapore Herbarium (SING), Kepong Herbarium (KEP) in FRIM and university Malaya Herbarium (KLU) for their hospitality and kindness providing facilities to work in their herbarium.

It is also my great pleasure to give a due recognition to my family members for heir all the time love, understanding and support in the course of this program and also for their prayers and words of encouragement whenever my enthusiasm waned. This study would not have been possible without the encouragement, patience and
overwhelming support of the author’s Husband Kouros Dadkhah, during the period of this research that is especially acknowledged.

Last and surely not least, I want to knowledge my friends and colleagues: Eum Sangmi, Mincheol, Farah Aliah F. Nordin, Ng Yong Jin, Mui Ching Tan and Kenny Khor. It is always impossible to personally thank everyone who has facilitated successful completion of this study. Therefore, I also would like to thank those who did not specifically named.

This research work is made possible through Research University Grant scheme no. RUGS 03-01-07-0035RU and RUGS 05-04-08-0556RU made available by Universiti Putra Malaysia.
I certify that a Thesis Examination Committee has met on 6 October 2011 to conduct the final examination of Shahla Hosseini on her thesis entitled “Morphological and Molecular Systematics of *Bulbophyllum* Thou. In Peninsular Malaysia” in accordance with the Universities and University Colleges Act 1971 and Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Name of Chairperson, PhD
Professor Umi Kalsom bt Yusof
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Name of Examiner 1, PhD
Professor Tan Soon Guan
Faculty of Biotechnology and biomolecular sciences
Universiti Putra Malaysia
(Internal Examiner)

Name of Examiner 2, PhD
Associate Professor Janna Ong Abdullah
Faculty of Biotechnology and biomolecular sciences
Universiti Putra Malaysia
(Internal Examiner)

Name of External Examiner, PhD
Associate Professor Kim Seung-Chul
Department of Biological Science
Sungkyunkwan University
Korea
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: ------------ 2011
This thesis was submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of supervisory committee were as follow:

Rusea Go, PhD
Associate Professor
Faculty of science
University Putra Malaysia
(Chairperson)

Ahmad Ainuddin Nuruddin, PhD
Associate Professor
Faculty of Forestry
University Putra Malaysia
(Member)

Faridah Qamaruz Zaman, PhD
Associate Professor
Faculty of science
University Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
University Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at University Putra Malaysia or at any other institution.

SHAHLA HOSSEINI
Date: 6 OCT 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>x</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER

1 GENERAL INTRODUCTION
 1.1 Importance of Molecular Systematics of *Bulbophyllum* in Peninsular Malaysia
 1.2 Objectives

2 LITERATURE REVIEW
 2.1 Background and History of Orchid Taxonomy (Orchidaceae family)
 2.2 Orchid Diversity in Peninsular Malaysia
 2.3 An Overview of the Genus *Bulbophyllum*
 2.3.1 The Genus *Bulbophyllum*
 2.3.2 Growing Conditions of *Bulbophyllum*
 2.3.3 Ecology of *Bulbophyllum*
 2.3.4 Historical Status and Remarks on Generic Delimitations of *Cirrhopetalum*
 2.3.5 Geography and Distribution of *Bulbophyllum*
 2.3.6 Classification History of *Bulbophyllum* in Peninsular Malaysia
 2.4 Objectives and Principles of Numerical Taxonomy
 2.5 DNA Sequencing as Single Locus DNA Marker
 2.6 Molecular Systematics
 2.6.1 The *matK* Plastid Gene
 2.6.2 The *trnL*-F Plastid Gene
2.6.3 The *rbcL* Plastid Gene 42
2.6.4 Internal Transcribed Spacer (ITS) Region 43

2.7 Bootstrap Value Ranges 44
2.8 Molecular Systematics of *Bulbophyllum* 45

3 MATERIALS AND METHODS 47
3.1 Taxon Sampling 47
3.2 Species Identification and Enumeration 48
3.3 Morphological Study 48
3.4 Molecular Study 54
 3.4.1 DNA Extraction 54
 3.4.2 Primers 56
 3.4.3 Amplification 56
 3.4.4 DNA Purification 60
 3.4.5 Database Search – BLAST 61
 3.4.6 DNA Sequence Alignment 61
 3.4.7 Base Composition 61
 3.4.8 Data Analyses 62
 3.4.8.1 Maximum Parsimony 63
 3.4.8.2 Maximum Likelihood 64
 3.4.8.3 Bayesian Analysis 64

4 RESULTS 65
4.1 Morphological Data 65
 4.1.1 Artificial Key to the Sections of *Bulbophyllum* 65
 4.1.1.1 Key to Sections Based on Vegetative Characters 66
 4.1.1.2 Key to Sections Based on Reproductive Characters 68
 4.1.2 Species Enumeration 70
 4.1.2.1 Section *Hirtula* 70
 4.1.2.2 Section *Cirrhopetalum* 73
 4.1.2.3 Section *Aphanobulbon* 80
 4.1.2.4 Section *Desmosanthes* 85
 4.1.2.5 Section *Sestochilus* 90
 4.1.2.6 Section *Careyana* 96
 4.1.2.7 Section *Globiceps* 98
 4.1.2.8 Section *Polyblepharon* 99
 4.1.2.9 Section *Epicrianthes* 100
 4.1.2.10 Section *Monilibulbus* 103
 4.1.2.11 Section *Ephippium* 105
 4.1.2.12 Section *Leptopus* 106
 4.1.2.13 Section *Altisceptrum* 107
4.1.3 Cluster Analysis
4.1.3.1 Species Interrelationship Based on Morphological Qualitative Characters
4.1.3.2 Species Interrelationship Based on Morphological Quantitative Characters
4.1.4 Cladistic Analysis of Qualitative Morphological Characters
4.2 Molecular Data
4.2.1 The \textit{rbcL} Gene Sequences and Variations
4.2.2 Phylogenetic Analysis of \textit{Bulbophyllum} Based on \textit{rbcL} Region
4.2.3 The \textit{matK} Gene Sequences and Variations
4.2.4 Phylogenetic Analysis of \textit{Bulbophyllum} Based on \textit{matK} Region
4.2.5 The \textit{trnL-F} Gene Sequences and Variations
4.2.6 Phylogenetic Analysis of \textit{Bulbophyllum} Based on \textit{trnL-F} Spacer
4.2.7 The ITS Gene Sequences and Variations
4.2.8 Phylogenetic Analysis of \textit{Bulbophyllum} Based on ITS
4.2.9 Analysis of Chloroplast Sequence Data
4.2.10 Combined Molecular Data Analysis

5 DISCUSSION
5.1 Saturation Analysis
5.2 Marker Utility
5.3 Monophyly and Sectional Relationships of Peninsular Malaysian \textit{Bulbophyllum}
5.4 Trouble Shooting of PCR Amplification
5.5 Geographical Distribution of Peninsular Malaysian \textit{Bulbophyllum}

6 SUMMARY, GENERAL CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH
6.1 Summary
6.1.1 Chloroplast genome sequences
6.1.2 Internal Transcribed Spacer Sequence
6.2 General Conclusions
6.3 Recommendations for Future Research

REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS