

UNIVERSITI PUTRA MALAYSIA

ESTIMATION OF EXPONENTIAL SUMS USING P-ADIC METHODS AND NEWTON POLYHEDRON TECHNIQUE

YAP HONG KEAT

IPM 2010 11

ESTIMATION OF EXPONENTIAL SUMS USING P-ADIC METHODS AND NEWTON POLYHEDRON TECHNIQUE

YAP HONG KEAT

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

2010

ESTIMATION OF EXPONENTIAL SUMS USING P-ADIC METHODS AND NEWTON POLYHEDRON TECHNIQUE

By

YAP HONG KEAT

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

December 2010

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of the Master of Science

ESTIMATION OF EXPONENTIAL SUMS USING P-ADIC METHODS AND NEWTON POLYHEDRON TECHNIQUE

By

YAP HONG KEAT

December 2010

Chairman : Kamel Ariffin bin Mohd Atan, PhD

Institute : Institute for Mathematical Research

Let p be a prime and f(x,y) be a polynomial in $Z_p[x,y]$. For $\alpha > 1$, the exponential sums associated with f modulo a prime p^{α} is defined as $S(f;p^{\alpha}) = \sum_{x,y \mod p^{\alpha}} e_{p^{\alpha}}(f(x,y))$. Estimation of $S(f;p^{\alpha})$ has been shown to depend on the number and p-adic sizes of common roots of the partial derivative polynomials of f. The objective of this research is to arrive at such estimations associated with a quadratic and cubic polynomials f(x,y).

To achieve this objective we employ the p-adic methods and Newton polyhedron technique to estimate the p-adic sizes of common zeros of partial derivative polynomials associated with quadratic and cubic forms. The combination of indicator diagrams associated with the polynomials are examined and analyzed especially on cases where p-adic sizes of common zeros occur at the overlapping segments of the indicator diagrams. Cases involving p-adic sizes of common zeros

that occur at simple points of intersection and the vertices have been investigated by earlier researchers.

The information obtained above is then applied to estimate the cardinality of the set $V(f_x, f_y; p^{\alpha})$. This estimation is then applied in turn to arrive at the estimation of exponential sums for quadratic and cubic polynomials.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGANGGARAN HASIL TAMBAH EKSPONEN DENGAN KAEDAH P-ADIC DAN TEKNIK POLIHEDRON NEWTON

Oleh

YAP HONG KEAT

Disember 2010

Pengerusi: Kamel Ariffin bin Mohd Atan, PhD

Institut: Institut Penyelidikan Matematik

Katakan p suatu nombor perdana dan f(x, y) suatu polinomial dalam $Z_p[x, y]$. Untuk $\alpha > 1$, hasil tambah eksponen yang disekutukan dengan f modulo p^{α} ditakrifkan sebagai $S(f; p^{\alpha}) = \sum_{x, y \mod p^{\alpha}} e_{p^{\alpha}}(f(x, y))$ yang dinilaikan bagi semua xdan y di dalam set reja lengkap modulo p^{α} . Penganggaran $S(f; p^{\alpha})$ telah ditunjukkan bersandar kepada bilangan dan saiz p-adic pensifar sepunya polinomial terbitan separa f. Objektif kajian ini adalah untuk mendapatkan penganggaran hasil tambah eksponen disekutukan dengan polinomial f(x, y) berbentuk kuadratik dan kubik.

Untuk mencapai objektif di atas kami menggunakan kaedah *p*-adic dan teknik polihedron Newton untuk menganggarkan saiz *p*-adic pensifar sepunya polinomial terbitan separa yang disekutukan dengan polinomial kuadratik dan kubik. Kombinasi

gambar rajah penunjuk yang disekutukan dengan polinomial di atas diperiksa dan dianalisis terutama bagi kes saiz *p*-adic pensifar sepunya yang berlaku di tembereng bertindih gambar rajah penunjuk. Kes saiz *p*-adic pensifar sepunya berlaku pada titik persilangan mudah dan bucu telah disiasat oleh pengkaji dahulu.

Keputusan yang diperolehi digunakan untuk menganggarkan kekardinalan bagi set $V(f_x, f_y; p^{\alpha})$. Penganggaran tersebut kemudiannya digunakan untuk mendapatkan penganggaran hasil tambah eksponen yang disekutukan dengan polinomial kuadratik dan kubik.

ACKNOWLEDGEMENTS

I am thankful to Professor Dato' Dr. Haji Kamel Ariffin Bin Mohd Atan, my supervisor, for his guidance, encouragement, patience, advice and critical reviews towards completion of my study and thesis. Without his guidance and help from the initial to the final level that enabled me to develop an understanding of the study, I could never accomplish this difficult task. I would also like to extend my gratitude to my co-supervisor, Dr. Siti Hasana Binti Sapar for her guidance, providing related information, and advice. I would also like to express my gratitude to all lecturers who had taught me before.

I am grateful to all my friends for giving me advice and providing related information in my study. They also gave me support and encouragement whenever I encounter problems.

Finally, my appreciation goes to my dearest parents and beloved family for their understanding, endless patience and encouragement when it was most required. I would like to share my enjoyment with them, they will always in my heart.

I certify that a Thesis Examination Committee has met on 2 December 2010 to conduct the final examination of Yap Hong Keat on his thesis entitled "Estimation of Exponential Sums using P-Adic Methods and Newton Polyhedron Technique" in accordance with the Universities and University College Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Mohamad Rushdan bin Md Said, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Isamiddin S.Rakhimov, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Nik Mohd Asri bin Nik Long, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Hailiza Kamarulhaili, PhD

Associate Professor School of Mathematical Sciences Universiti Sains Malaysia (External Examiner)

BUJANG BIN KIM HUAT, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 24 March 2011

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of **Master of Science**. The members of the Supervisory Committee were as follows:

Kamel Ariffin bin Mohd Atan, PhD

Professor Institute for Mathematical Research Universiti Putra Malaysia (Chairman)

Siti Hasana bt Sapar, PhD Senior Lecturer Faculty of Science Universiti Putra Malaysia (Member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

YAP HONG KEAT

Date: 2 December 2010

TABLE OF CONTENT

ABSTRACT ABSTRAK ACKNOWLEDGEMENTS APPROVAL DECLARATION LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS		Page ii iv vi vii ix xii xvii
CHAPTER		
1	INTRODUCTION 1.1 Background 1.2 Problem Statement 1.3 Research Objectives 1.4 Summary of Thesis	1 1 7 8 8
2	NEWTON POLYHEDRON AND ITS INDICATOR DIAGRAM 2.1 Introduction 2.2 Newton polyhedron 2.3 Normal to Newton polyhedron 2.4 Indicator Diagram 2.4.1 Points on the Indicator Diagram 2.4.2 <i>p</i> -adic Orders of Common Zeros of Polynomials 2.5 Conclusion	11 11 14 19 21 24 27
3	<i>p</i> -ADIC ORDERS OF COMMON ZEROS OF POLYNOMIALS AND OVERLAPPING SEGMENTS OF INDICATOR DIAGRAMS 3.1 Introduction 3.2 <i>p</i> -adic Orders of Common Roots of Two Polynomials of the form $f(x, y) = ax^n + by^n + c$, $g(x, y) = m^n + m^n + c$ where $n \ge 1$	28 28 28
	$g(x, y) = rx^{2} + sy^{2} + t \text{ where } n \ge 1$ 3.3 <i>p</i> -adic Orders of Common Roots of Two Polynomials of the form $f(x, y) = ax^{2} + bxy + cy^{2} + d$, $g(x, y) = rx^{2} + sxy + ty^{2} + q$ 3.4 <i>p</i> -adic Size of Common Root of Two Linear Polynomials	40 61
	 3.5 <i>p</i>-adic Sizes of Common Roots of Two Complete Quadratic Polynomials 3.6 <i>p</i>-adic Sizes of Common Roots of Two Linear 	67
	Polynomials in The Neighbourhood of (x_0, y_0) 3.7 <i>p</i> -adic Sizes of Common Roots of Two Complete Quadratic	80
	Polynomials in The Neighbourhood of (x_0, y_0)	88

	3.8 Conclusion	105
4	ESTIMATION OF MULTIPLE EXPONENTIAL SUMS	
	IN TWO VARIABLES	106
	4.1 Introduction	106
	4.2 Estimation of Cardinality of the Set to Congruence	
	Equations	106
	4.2.1 Cardinality of the Set $V(f_x, f_y; p^{\alpha})$	106
	4.2.2 Estimation of Cardinality of the Set $V(f_x, f_y; p^{\alpha})$	107
	4.3 Estimation of Multiple Exponential Sums in Two	
	Variables	112
	4.3.1 Exponential Sums	112
	4.3.2 Estimation of Exponential Sums	113
	4.4 Conclusion	119
5	CONCLUSION AND SUGGESTION	120
	5.1 Major Findings	120
	5.2 Conclusion	124
	5.3 Suggestion	126
REFERE	NCES	127
BIODAT	BIODATA OF STUDENT	
LIST OF PUBLICATIONS		130

