UNIVERSITI PUTRA MALAYSIA

A COMBINED RECOMBINANT RETROVIRAL-BASED THERAPY FOR COLON CANCER IN THE MURINE MODEL USING ANTI-TUMORIGENIC AND ANTI-ANGIOGENIC AGENTS

NIK MOHD AFIZAN NIK ABD. RAHMAN

IB 2011 1
A COMBINED RECOMBINANT RETROVIRAL-BASED THERAPY FOR COLON CANCER IN THE MURINE MODEL USING ANTI-TUMORIGENIC AND ANTI-ANGIOGENIC AGENTS

NIK MOHD AFIZAN NIK ABD. RAHMAN

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA

2011
A COMBINED RECOMBINANT RETROVIRAL-BASED THERAPY FOR COLON CANCER IN THE MURINE MODEL USING ANTI-TUMORIGENIC AND ANTI-ANGIOGENIC AGENTS

By

NIK MOHD AFIZAN NIK ABD. RAHMAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of the Requirements for the Degree of Doctor of Philosophy
Universiti Putra Malaysia

January 2011
A COMBINED RECOMBINANT RETROVIRAL-BASED THERAPY FOR COLON CANCER IN THE MURINE MODEL USING ANTI-TUMORIGENIC AND ANTI-ANGIOGENIC AGENTS

By

Nik Mohd Afizan Nik Abd. Rahman

January 2011

Chairman:  Zeenathul Nazariah Allaudin, PhD

Faculty:  Institute of Bioscience

Anti-tumorigenic gene therapy offers many benefits over than conventional therapy i.e., chemotherapy or radiotherapy including less toxic side effects, rapid delivery and more sensitive compared to target-based drugs. Anti-tumorigenic agents alone were not proven to be effective in promoting the delay or regression of tumor mass in vivo due to low therapeutic gene transfer efficiency and the formation of new blood vessels in tumors. In addition, the blood vessels are one of the major factors that reduce the effectiveness of anti-tumorigenic agents. Consequently, a new therapeutic approach that combined both anti-tumorigenic and anti-angiogenic agents was established and proven to provide superior and beneficial synergistic effect. In the present study, a complete open reading frame (ORF) encoding endostatin protein was RNA extracted from a Balb/c mice liver tissue and transcribed into cDNA. The gene was then cloned into TOPO vector prior to a retroviral vector, pMSCVneo. Upon cloning and sequencing of
the full length of the gene, it was revealed that the complete ORF contained 550 nucleotides, by which the size similar to that of established endostatin. While, anti-tumorigenic gene; VP3 was obtained from previous study (generous gift from Professor Mohd Azmi Mohd Lila) and verified by PCR approaches. The PCR amplification and restriction endonuclease analysis showed that the gene product was convenient and similar to the expected size. The gene obtained was also 98% homology to that the references strain, Cux-1 by DNA sequencing analysis. Both recombinant constructs were transfected into PT67 cells and the transiently produced virus used to treat Balb/c mice with established colon tumors. The method of treatments was given in either as single modality or combined treatment with standardized of tumor size in each mice group. Here, we also revealed a viral delivery vehicle named 'retroviral vector’ to deliver the both anti-tumorigenic and anti-angiogenic agents into the tumor mass to achieve the effects of apoptosis. Furthermore, the retroviral-mediated gene therapies also showed no signs of adverse effect. Based on PCR approaches, the recombinant retrovirus particles were disseminated into the bloodstream and finally presented in various tissues but only expressed their therapeutic genes in tumors. As a result, the risk of undesirable characteristics of cancer gene therapy could be avoided in non-target tissues. The differential activities of VP3 and endostatin were investigated by the use of the immunohistochemistry analysis such as PCNA and vWF. The apoptosis activities upon expression of VP3 and endostatin were further studied by quantifying and identifying biochemical changes and number of affected cells due to apoptosis. Upon TUNEL and DNA fragmentation assays, typical apoptotic patterns were observed, to include formation of apoptotic bodies and visible DNA ladders, as early as 48 hours after
treatments. Since necrotic cells could be stained positively by TUNEL, a flow cytometry assay was developed for identifying and quantifying dead or dying cells in mode of cell death. The apoptosis percentage including early and late apoptotic quadrants showed that the combined tumor treatment was higher than VP3 and endostatin only. The effect of VP3 and endostatin protein expression in tumor and vital organ tissues were also confirmed upon examination by inverted microscopy analysis with H&E-stained sections. In addition, upon electron microscopic examination, typical morphological apoptotic features were observed including intact membranes and organelles, cell blebbing as well as condensed nuclear membranes in single- and combined-treated tumors not in other vital organ tissues. Interestingly, based on these constructive findings the combined treatment noted better responses in tumor bearing mice rather than single treatments. In conclusion, this study showed that the combined approach was more promising, effective and good governance on delay tumor growth and inducing apoptosis than introducing VP3 or endostatin alone. The combination treatment also offers potential benefits in control of tumorigenesis, and thus deserves further research as a preferred approach in cancer gene therapy.
A COMBINED RECOMBINANT RETROVIRAL-BASED THERAPY FOR
COLON CANCER IN THE MURINE MODEL USING ANTI-TUMORIGENIC
AND ANTI-ANGIOGENIC AGENTS

Oleh

Nik Mohd Afizan Nik Abd. Rahman

Januari 2011

Pengerusi: Zeenathul Nazariah Allaudin, PhD

Fakulti: Institut Biosains

Terapi gen anti-tumorigenic menawarkan banyak manfaat lebih dari terapi konvensional iaitu kemoterapi, atau radioterapi termasuk kesan sampingan yang kurang toksik, penghantaran cepat dan lebih sensitif berbanding dengan ubat sasaran yang berpusat. Agen anti-tumorigenic saja tidak terbukti berkesan dalam mempromosikan kelewatan atau regresi massa tumor in vivo berhubung dengan kecekapan pemindahan gen terapeutik yang rendah dan pembentukan pembuluh darah baru pada tumor. Selain itu, pembuluh darah merupakan salah satu faktor utama yang mengurangkan keberkesanan agen anti-tumorigenic. Akibatnya, pendekatan terapi baru yang digabungkan baik agen anti-tumorigenic dan anti-angiogenik didirikan dan terbukti memberikan kesan sinergis unggul dan bermanfaat. Dalam kajian ini, suatu rangka baca terbuka lengkap (ORF) encoding protein endostatin adalah RNA diekstraksi dari RNA
ACKNOWLEDGEMENTS

In the name of Allah, the most Generous and the most Merciful. All praise is due to Allah, for giving me inspiration and stoutheartedness along this journey.

I would like to express my gratitude to all those who gave me the possibility to complete this thesis. Firstly, I am deeply indebted to my main supervisor, Dr. Zeenathul Nazariah Allaudin whose help, stimulating suggestions and encouragement helped me in all the time of research for and writing of this thesis. She always inspirational and constantly pushes me to reach my full potential. I am very grateful for all of her help as I learn to become an independent researcher. She has also provided me with numerous opportunities to work with other lab members and outside collaborators and to attend conferences. Her attitude towards work and colleagues has created a very friendly and supportive working environment.

I have furthermore to thank the members of supervisor committee, Professor Dr. Mohd Azmi Mohd Lila and Associate Professor Dr. Noordin Mohamed Mustapha. Their advice, input, and support have been invaluable. I would also like to appreciate the Institute of Bioscience and Virology Lab, Department of Microbiology, Faculty of Veterinary Medicine for opening my educational avenues and building solid and rigorous foundation for my career.
My colleagues and friends in the Laboratory of Immunotherapeutic and Vaccine have always be there for me when I need them the most. I am deeply grateful for all their help, support, time, interest and valuable hints. They have always been very patient with me, as I often have many questions and need lot of assistance. Especially I am obliged to Ruzila Ismail, Nor Hidayah Mustafa, Caryn Lim Shen Ni and Tan Seok Shin as they are part of the APOVAX group. I truly enjoy working with them to discover the wonders of cancer therapy together. I would like to thank Noraini, Lo and Tam for their help which I immensely appreciate. I have also benefited tremendously through working with Nazrina, Morvarid, Parissa, Humayoun and Quah. I would like to acknowledge Mr. Kamarudin for his outstanding technical support and dedication to this research. I am grateful to the National Science Fellowships (NSF) and National Cancer Council (MAKNA) for funding my research.

Mostly, I would like to express my thanks and deepest gratitude to my family. My parents, Nik Abd. Rahman Nik Abu Bakar and Haimah Abas, provide me the support and encouragement, which had helped me to undertake and complete these studies. Finally, I also want to give my special thanks to my wife Norriah Hani whose patient love enabled me to achieve my goals.
I certify that an Examination Committee met on 18th January 2011 to conduct the final examination of Nik Mohd Afizan Bin Nik Abd. Rahman on his Doctor of Philosophy thesis entitled “A Combined Recombinant Retroviral-based Therapy for Colon Cancer in The Murine Model using Anti-Tumorigenic and Anti-Angiogenic Agents” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

**ABDUL RAHMAN OMAR, Ph.D.**  
Professor  
Faculty of Veterinary Medicine  
Universiti Putra Malaysia  
(Chairman)

**SHEIKH OMAR ABDUL RAHMAN, Ph.D.**  
Professor & Dato’  
Faculty of Veterinary Medicine  
Universiti Putra Malaysia  
(Member)

**AHMAD BUSTAMAN ABDUL, Ph.D.**  
Lecturer  
Faculty of Medical and Health Science  
Universiti Putra Malaysia  
(Member)

**JIMMY KWANG, Ph.D.**  
Professor  
Temasek Life Science Laboratory  
National University of Singapore  
(Independent Examiner)

---

**SHAMSUDDIN SULAIMAN, PhD**  
Professor/Deputy Dean  
School of Graduate Studies  
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

**Zeenathul Nazariah Allaudin, PhD**  
Senior Lecturer  
Faculty of Veterinary Medicine  
Universiti Putra Malaysia  
(Chairman)

**Mohd Azmi Mohd Lila, PhD**  
Professor  
Faculty of Veterinary Medicine  
Universiti Putra Malaysia  
(Member)

**Noordin Mohamed Mustapha, PhD**  
Associate Professor  
Faculty of Veterinary Medicine  
Universiti Putra Malaysia  
(Member)

---

**HASANAH MOHD GHAZALI, PhD**  
Professor and Dean  
School of Graduate Studies  
Universiti Putra Malaysia

Date:
DECLARATION

I declare that this thesis is my original work except for quotation and citations which have duly acknowledged. I also declare that it has not been previously, and is not concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

NIK MOHD AFIZAN NIK ABD. RAHMAN

Date: 18 January 2011
Dedicated to my family:
Haimah, Nik Abd. Rahman and Noriah Hani
For their endless supports
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL SHEET</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

## CHAPTER

### 1 INTRODUCTION

1

### 2 LITERATURE REVIEW

2.1 Gene Therapy

5

2.2 Methods of Gene Transfer

6

2.2.1 Non-Viral Delivery Systems

7

2.2.2 Viral Vector Delivery Systems

11

2.2.3 Other Viral Delivery Systems

22

2.3 Cancer

25

2.4.1 Colon Cancer

25

2.4.2 Murine Models of Colon Cancer Study

27

2.4 Cancer Gene Therapy

28

2.4.1 Anti-tumorigenic Agents

30

2.4.2 Apoptin/ VP3

31

2.4.3 Anti-angiogenic Agents

31

2.4.4 Endostatin

32

2.4.5 Combinatorial Gene Therapy

33

### 3 ESTABLISHMENT OF RECOMBINANT ENDOSTATIN

3.1 Introduction

35

3.2 Materials and Methods

37

3.2.1 Mouse

37

3.2.2 Total RNA Extraction from Mouse Liver Tissue

37

3.2.3 Primers for Murine Endostatin Gene Amplification
3.2.4 Complementary DNA (cDNA) Synthesis 39
3.2.5 Amplification of mEndostatin Gene 40
3.2.6 Purification of mEndo DNA Fragment 41
3.2.7 Cloning of PCR Product into a TOPO Vector 41
3.2.8 Restriction Endonuclease Digestion of Endostatin Gene 43
3.2.9 Cloning of Endostatin Gene into a Retroviral Vector 43
3.2.10 Bacterial Cell Transformation 45
3.2.11 Screening for Positive Recombinant Clones 45
3.2.12 Miniprep Plasmid Extraction 45
3.2.13 Maxiprep Plasmid Extraction 46
3.2.14 Restriction Digestion Analysis 47
3.2.15 DNA Sequencing Analysis of Endostatin Gene 48

3.3 Results
3.3.1 mEndostatin mRNA 48
3.3.2 Normalization of Housekeeping Gene 48
3.3.3 Comparison between Complete and Raw Endostatin Gene 50
3.3.4 Double Digestion of Recombinant pMSCV-Endo Vector 50
3.3.5 Double Digestion of Recombinant pMSCV-VP3 Vector 50
3.3.6 Sequencing Results 50

3.4 Discussion 63

4 PRODUCTION AND IN VITRO EXPRESSION OF INFECTIOUS RECOMBINANT RETROVIRUS PARTICLES
4.1 Introduction 67
4.2 Materials and Methods
4.2.1 Cell lines 69
4.2.2 General Cultivation of Cell Lines 70
4.2.3 Preparation of Cell Culture Stocks 71
4.2.4 Calcium Phosphate Transfection 71
4.2.5 Titration of Geneticin Stocks (kill curve) 73
4.2.6 MTT Assay 73
4.2.7 Selection of Stable Retroviruses-producing Cell Line 74
4.2.8 Generation of Replication Defective Recombinant Retrovirus Stock 74
4.2.9 Concentration of Virus Stocks 75
4.2.10 Determination of Viral Titers 75
4.2.11 RNA Preparation from Culture Cells 77
4.2.12 Reverse Transcriptase PCR 77
4.2.13 Real Time PCR 78
4.2.13.1 Standard Curve Preparation 79
4.2.14 Total Protein Extraction 79
4.2.15 Denaturing SDS-PAGE 80
4.2.16 Dot-Blot Analysis 81

4.3 Results
4.3.1 Titration of Antibiotic Stocks (G418 resistance) 82
4.3.2 Standard Curve Standardization 82
4.3.3 Standard Curve Analysis 87
4.3.4 SDS-PAGE Analysis 87
4.3.5 Dot Blot Analysis 87

4.4 Discussion 92

5  EFFECT OF SINGLE OR COMBINE RECOMBINANT RETROVIRAL-
MEDIATED GENE THERAPY ON TUMORS
5.1 Introduction 95
5.2 Materials and Methods
  5.2.1 Animal 97
  5.2.2 Cancer Cells Preparation 97
  5.2.3 Injection of Cancer Cells Suspension 98
  5.2.4 Measurement of Tumor Growth 98
  5.2.5 Vaccination of Mice 99
  5.2.6 Tissue Collection 100
  5.2.7 RNA Extraction 101
  5.2.8 One-Step Reverse Transcriptase Polymerase Chain Reaction 102
  5.2.9 Two-Step Reverse Transcriptase Polymerase Chain Reaction 103
  5.2.10 Agarose Gel Electrophoresis Analysis 104
  5.2.11 Immunohistochemistry (IHC) Staining 104
  5.2.12 Cell Counting 106
  5.2.13 Statistical Analysis 107

5.3 Results
  5.3.1 Effects of VP3 and Endostatin in Small Tumor Volume 107
  5.3.2 Tumor Growth Assessment 110
  5.3.3 In Vivo Delivery of VP3 and Endostatin 112
  5.3.4 Expression of VP3 and Endostatin 112
  5.3.5 Evaluation of PCNA Expression 115
  5.3.6 Evaluation of vWF Expression 115

5.4 Discussion 118

6  APOPTOSIS DETECTION OF TUMOR MASS OF MURINE MODEL
6.1 Introduction 124
6.2 Materials and Methods