

UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT, OPTIMIZATION AND VALIDATION OF LC-MS/MS METHOD FOR MULTI-MYCOTOXIN DETECTION IN CEREALS

FARHANG SOLEIMANY

FSTM 2011 5

DEVELOPMENT, OPTIMIZATION AND VALIDATION OF LC-MS/MS METHOD FOR MULTI-MYCOTOXIN DETECTION IN CEREALS

By

FARHANG SOLEIMANY

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

April 2011

DEDICATION

To my beloved wife

Anosheh

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

DEVELOPMENT, OPTIMIZATION AND VALIDATION OF LC-MS/MS METHOD FOR MULTI-MYCOTOXIN DETECTION IN CEREALS

By

FARHANG SOLEIMANY

April 2011

Chairman : Professor Jinap Selamat, PhD

Faculty : Food Science and Technology

Mycotoxins are fungal natural metabolites that have a wide range of toxic effects. Among hundreds of mycotoxins, aflatoxins (AFs) (AFB₁, AFB₂, AFG₁, and AFG₂), ochratoxin A (OTA), zearalenone (ZEA), deoxynivalenol (DON), fumonisins (FB₁ and FB₂,), T2 and HT2-toxins are the major health concerns for humans and domestic animals. First, an HPLC method has been developed to investigate the separation of mycotoxins in liquid chromatography. Two derivatization systems, photochemical and chemical methods were applied for derivatization of AFB₁ and AFG₁, as well as FB₁ and FB₂, respectively. Then, a LC-MS/MS method has been developed by evaluating the effect of LC column (50 and 150 mm), organic modifier (methanol and acetonitrile) ionization process (ESI, APCI) and ionization mode (positive and negative) on separation and determination of mycotoxins. Then the developed

method was optimized for simultaneous determination of the 11 mycotoxins. Response surface methodology (RSM) was used to optimize the LC conditions. The effect of organic solvent percentage at the beginning (0-20%) and end (75-95%) of gradient mobile phase, acid concentration in aqueous phase (0-1%), and flow rate (100-300 μ l/min) have been investigated for optimization of LC responses peak area and signal to noise ratio (S/N).

The optimized responses obtained using following conditions: organic solvent of 5% at start and 95% at the end of gradient mobile phase, 0.1% acid concentration, and 250 µl/min flow rate. In addition, best sample preparation procedure have been selected by evaluating the effects of two different common types of solvent extraction methods (one step and two step extraction) and four types of clean-up methods including Oasis HLB, MycoSep, immunoaffinity column (IAC) and no clean-up on mycotoxins recoveries. The results of the study showed that the best recoveries (79-109%) for all mycotoxins would be obtained by using one step extraction with no clean up. Finally, the optimized LC-MS/MS method was validated by measuring the selectivity, sensitivity, linearity, accuracy and precision. Limit of Detection (LOD) for AFB₁, AFB₂, AFG₁, AFG₂, DON, T2-Toxin, HT2-Toxin, FB₁, FB₂, OTA and ZEA was 0.05, 0.25, 0.05, 0.5, 5, 2, 2, 10, 10, 0.01, and 0.1, whereas the Limit of Quantification (LOQ) was 0.1, 0.5, 0.1, 1, 10, 4, 4, 20, 20, 0.02, and 0.2 ppb, respectively. Finally, the optimized and validated LC-MS/MS method was applied on real cereal samples (rice, barley, oat, wheat and maize) collected from Malaysian markets. The results showed applicability of the aforementioned method for being

used as fast routine method with high accuracy and precision for simultaneous determination of mycotoxins in cereal.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagi memenuhi keperluan untuk ijazah Doktor Falsafah

PEMBANGUNAN, OPTIMASI DAN VALIDASI KAEDAH LC-MS/MS UNTUK PENGESANAN MULTI-MIKOTOKSIN DALAM BIJIRIN

Oleh

FARHANG SOLEIMANY

April 2011

Pengerusi : Profesor Jinap Selamat, PhD

Fakulti : Sains dan Teknologi Makanan

Mikotoksin merupakan metabolit semulajadi cendawan yang mempunyai pelbagai kesan beracun. Di antara ratusan mikotoksin, aflatoksin (AFS) (AFB₁, AFB₂, AFG₁, dan AFG₂), ochratoxin A (OTA), zearalenon (Zea), deoxynivalenol (DON), fumonisins (FB₁ dan FB₂), T2 dan HT2-racun masalah kesihatan utama bagi manusia dan haiwan domestik sahaja. Pertama, kaedah KCKT telah dibangunkan untuk menyiasat pemisahan mikotoksin dalam kromatografi cair. Dua derivatisasi sistem, fotokimia dan kaedah kimia digunakan untuk derivatisasi dari AFB₁ dan AFG₁, serta FB₁ dan FB₂, masing-masing. Kemudian, sebuah kaedah LC-MS/MS telah dibangunkan oleh menilai kesan daripada medan LC (50 dan 150 mm), modifier organik (metanol dan asetonitril) proses pengionan (ESI, APCI) dan mod pengionan (positif dan negatif) pada pemisahan dan penentuan mikotoksin. Kemudian kaedah

yang dibangunkan adalah dioptimumkan untuk penentuan serentak dari 11 mikotoksin. Respon permukaan metodologi (RSM) digunakan untuk mengoptimumkan keadaan LC. Pengaruh peratusan pelarut organik di bermula (0-20%) dan akhir (75-95%) dari kecerunan fasa gerak, konsentrasi asid dalam fasa air (0-1%), dan laju aliran (100-300 SSL / minit) telah diselidiki untuk pengoptimuman dari respon luas puncak LC dan isyarat terhadap noise (S/N). Tanggapan dioptimumkan diperolehi dengan menggunakan syarat berikut: pelarut organik 5 di awal dan 95% pada akhir fasa gerak kecerunan, konsentrasi asid 0,1%, dan 250 SSL / min laju aliran. Selain itu, prosedur pembuatan sampel terbaik telah dipilih oleh menilai kesan daripada dua jenis umum yang berbeza kaedah ekstraksi pelarut (satu langkah dan dua langkah ekstraksi) dan empat jenis pembersihan kaedah termasuk Oasis HLB, MycoSep, medan immunoaffinity (IAC) dan tidak ada bersih-up pada pemulihan mikotoksin. Keputusan kajian menunjukkan bahawa pemulihan terbaik (79-109%) untuk semua mikotoksin akan diperolehi dengan menggunakan salah satu langkah ekstraksi tanpa membersihkan. Akhirnya, kaedah LC-MS/MS dioptimumkan disahkan dengan mengukur selektivitas, sensitiviti, Linieritas, ketepatan dan presisi. Tarikh pengesanan (LOD) untuk AFB₁, AFB₂, AFG₁, AFG₂, DON, T2-Toxin, HT2-Toksin, FB₁, FB₂, OTA dan Zea adalah 0.05, 0.25, 0.05, 0,5, 5, 2, 2, 10, 10, 0,01, dan 0,1, sedangkan Batas kuantifikasi (loq) adalah 0,1, 0,5, 0,1, 1, 10, 4, 4, 20, 20, 0.02, dan 0.2 ppb, masing-masing. Akhirnya, dioptimumkan dan diaktifkan LC-MS/MS kaedah ini diterapkan pada contoh nyata bijirin (beras, barley, oat, gandum dan jagung) yang dikumpulkan dari pasaran Malaysia. Keputusan kajian

vii

menunjukkan penerapan kaedah untuk digunakan sebagai kaedah rutin dengan ketepatan dan presisi tinggi untuk penentuan serentak dari mikotoksin pada bijirin.

AKNOWLEDGEMENTS

I would like to express my deep gratitude to my supervisor, Professor Dr. Jinap Selamat, for her kind guidance, advice, encouragement and financial support throughout the project.

I would like to thanks my supervisory committee members, Dr. Faridah abas and Dr. Alfi Khatib, for their enthusiasm and suggestions.

I owe my loving thanks to my Dear wife Anosheh Rahmani, for her endless patience and encouragement when it was most required. How can I thank you? For your patient, your help giving me, suggestions, listening to my complaints, worries and cheering me up during these years of personal and professional growth. It would not be possible without you...

Sincere appreciation and gratitude to my mother for her love, affection and prayers, and my late father, who always dreamed me to be educated to the highest level. I would like to thank my parent-in-laws for their encouragement, spirit support, and helps.

Thanks to The Universiti Putra Malaysia, for sponsoring this research under Research university grants (RUGs) Fund project No. 02/01/07/0024RU. Thanks to Dr. Seyed Hamed Mirhosseini for useful statistical help.

My warmest thanks go to all present and former colleagues of the center of excellence for food safety research for the bright working environment and encouragement.

I certify that a thesis Examination Committee met on 22 April 2011 to conduct the final examination of Farhang Soleimany on his thesis entitled "Development, Optimization and Validation of LC-MS/MS Method for Multi-mycotoxin Detection in Cereals" in accordance with the Universities and University College Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The committee recommends that the student de awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Mohammad Reza Mozafari, PhD

Associated Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Son Radu, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Internal Examiner)

Farinazleen Mohd Ghazali, PhD

Senior Lecturer Faculty of Food Science and Technology Universiti Putra Malaysia (Internal Examiner)

John Gilbert, PhD

Professor Department of Agrobiotechnology University of Natural Resources and Applied Life Science Austria (External Examiner)

NORITAH OMAR, Ph.D.

Associated Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 24 May 2011

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Jinap Selamat, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Faridah Abas, PhD

Doctor Faculty of Food Science and Technology Universiti Putra Malaysia (Member)

Alfi Khatib, PhD

Doctor Faculty of Food Science and Technology Universiti Putra Malaysia (Member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously and is not concurrently submitted for any other degree at UPM or at any other institutions.

FARHANG SOLEIMANY

Date: 22 April 2011

TABLE OF CONTENTS

AB AB AC AP DE LIS	EDICATION BSTRACT BSTRAK CKNOWLEDGEMENTS PROVAL ECLARATION ST OF TABLES ST OF FIGURES ST OF ABBREVIATIONS	Page ii iii vi ix xi xiii xiii xix xxi xxv
CH	IAPTER	
1	INTRODUCTION Background of study Importance of study Objectives	1 3 5
2	LITERATURE REVIEW Mycotoxins Aflatoxins (AFs) Occurrence of aflatoxins Adverse effects of aflatoxins Regulations of aflatoxins Ochratoxin A (OTA) Occurrence of OTA Adverse effects of OTA Regulations of OTA Zearalenone Occurrence of ZEA Adverse effects of ZEA Regulations of ZEA Thrichothecenes Deoxynivalanol (DON)	7 8 9 9 10 11 12 13 13 13 14 15 15 15 17
	Deoxynivalenol (DON) Occurrence of DON Adverse effects DON Regulations for DON Fumonisins (FB1, FB2, FB3) Occurrence of FBs Adverse effects FBs Regulations for FBs T-2 and HT-2 Toxin Occurrence of T2 and HT2-Toxin Adverse effects T2 and HT2-Toxin	17 18 19 19 20 21 22 22 23 25 25

Regulations for T2 and HT2-Toxin	26
Sampling	27
Sample preparation techniques for the determination of mycotoxins	28
Extraction of mycotoxins	29
Liquid-liquid extraction	30
Clean-up of mycotoxins	31
Liquid-liquid separation	32
Solid phase extraction (SPE)	32
Ion exchange columns	34
Immunoaffinity column (IAC)	35
Multifunctional Mycosep Columns	37
Separation and detection techniques for the determination of mycotoxins	38
Thin layer chromatography (TLC)	39
Gas chromatography (GC)	42
High performance liquid chromatography (HPLC)	43
Photo diode array detection (PDA)	44
Fluorescence detection (FLD)	45
Derivatization techniques	46
Post column photolytic derivatization	47
Chemical pre column derivatization	48
Liquid chromatography mass spectrometry (LC-MS)	48
Ionization techniques	50
Electrospray-ionization (ESI)	51
Atmospheric pressure chemical ionization	53
(APCI)	
Mass analyzers	55
Ion trap mass spectrometry	55
Quadrupole	56
Time of flight	57
Mass spectrometry (MS/MS)	58
Application of LC-MS/MS for trace analysis of mycotoxins	60
Validation	65
MATERIALS AND METHODS	
Materials	66
Instrumentation	67
HPLC equipment and detectors	67
LC-MS/MS equipments and parameters	68
Methods	68
Preparation of stock and working standard of mycotoxins	69
Preparation of spiked sample	69
Sample extraction	70
One step extraction	70
Two steps extraction	70
Sample clean-up methods	71
Sample clean- up by MycoSep 226	71
Sample clean- up by Oasis HLB column	71

	Sample clean- up by immunoaffinity column Sample no clean-up method	72 73
	Derivatization	73
		73
	Statistical analysis	12
4	SIMULTANEOUS DETERMINATION OF MYCOTOXINS USING	
	RP-HPLC-PDA-FLD WITH PHRED AND POST-COLUMN	
	DERIVATIZATION SYSTEM	_
	Introduction	75
	Materials and methods	77
	Chemicals and materials	78
	Stock and working standard preparation	78
	Instrumentation	78
	Samples	78
	Sample preparation	78
	HPLC method development	79
	HPLC method Validation	81
	Linearity	81
	Sensitivity	81
	Recovery	82
	Result and discussion	82
	HPLC condition	82
	HPLC method development	83
	Method validation	87
	Application to real sample	88
	Conclusion	9(
5	DEVELOPMENT OF A LC-MS/MS METHOD FOR SIMULTANEOUS DETERMINATION OF AFLATOYINS	

DEVELOTMENT OF A DC-MB/MB METHOD FC	
SIMULTANEOUS DETERMINATION OF AFLATOXIN	IS,
OCHRATOXIN A, ZEARALENONE, DEOXYNIVALENO	L,
FUMONISINS, T2 AND HT2-TOXIN	
Introduction	92
Materials and methods	94
Chemicals and reagents	94
Instrumentation	94
Stock and working standard preparation	94
LC-MS/MS method development	95
Statistical analysis	95
Results and discussion	95
MS/MS method development	95
Development of mobile phase program	103
Effect of injection volume	104
Selection of ionization method and mode	104
Conclusions	110

THE UPLC-MS/MS **OPTIMIZATION** OF METHOD FOR SIMULTANEOUS DETERMINATION OF AFLATOXINS, OTA, ZEA, DON, FUMONISINS, T2 AND HT2-TOXIN USING **EXPERIMENTAL DESIGN** Introduction 111 Materials and methods 112 Chemicals and Materials 113 Instrumentation 113 Stock and working standard preparation 113 LC-MS/MS method optimization 113 Statistical analysis 114 Results and discussion 115 Optimization using central composite design 115 Interpretation of response surface model 126 Fitting the model 138 Validation and verification of the models 140 Conclusion 147

6

7 EVALUATING SAMPLE PREPARATION METHODS FOR THE SIMULTANEOUS DETERMINATION OF AFLATOXINS, OTA, ZEA, DON, FUMONISINS, T2 AND HT2-TOXIN IN CEREALS

Introduction	148
Materials and methods	152
Chemicals and materials	152
Stock and working standard preparation	152
Spiked sample preparation	152
Instruments	153
LC-MS/MS conditions	153
Selection of extraction method	153
Selection of clean-up methods	154
Statistical analysis	154
Results and discussions	155
Comparison of extraction and clean-up methods	155
Conclusion	168

8 SINGLE LABORATORY LC-MS/MS METHOD VALIDATION FOR SIMULTANEOUS DETERMINATION OF AFLATOXINS, OTA, ZEA, DON, FUMONISINS, T2-TOXIN AND HT2-TOXIN IN CEREALS Introduction 169 Materials and methods 170

Chemicals and reagents	170
Stock and working standard preparation	171
Samples	171
Spiked sample preparation	171
Sample preparation for analysis	171
Instrumentation	172
Validation procedure	172
Results and discussions	174
Specificity	174
Linearity	178
Sensitivity	184
Accuracy and Precision	186
Robustness	192
Application on real cereal samples	193
Conclusion	196

9 SUMMARY, GENERAL CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH

Conclusion	198
Recommendation	199
REFERENCES	203
BIODATA OF STUDENT	231
LIST OF PUBLICATIONS	232

