DEVELOPMENT, OPTIMIZATION AND VALIDATION OF LC-MS/MS METHOD FOR MULTI-MYCOTOXIN DETECTION IN CEREALS

FARHANG SOLEIMANY

FSTM 2011 5
DEVELOPMENT, OPTIMIZATION AND VALIDATION OF LC-MS/MS METHOD FOR MULTI-MYCOTOXIN DETECTION IN CEREALS

By

FARHANG SOLEIMANY

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

April 2011
DEDICATION

To my beloved wife

Anosheh
Mycotoxins are fungal natural metabolites that have a wide range of toxic effects. Among hundreds of mycotoxins, aflatoxins (AFs) (AFB1, AFB2, AFG1, and AFG2), ochratoxin A (OTA), zearalenone (ZEA), deoxynivalenol (DON), fumonisins (FB1 and FB2), T2 and HT2-toxins are the major health concerns for humans and domestic animals. First, an HPLC method has been developed to investigate the separation of mycotoxins in liquid chromatography. Two derivatization systems, photochemical and chemical methods were applied for derivatization of AFB1 and AFG1, as well as FB1 and FB2, respectively. Then, a LC-MS/MS method has been developed by evaluating the effect of LC column (50 and 150 mm), organic modifier (methanol and acetonitrile) ionization process (ESI, APCI) and ionization mode (positive and negative) on separation and determination of mycotoxins. Then the developed
method was optimized for simultaneous determination of the 11 mycotoxins. Response surface methodology (RSM) was used to optimize the LC conditions. The effect of organic solvent percentage at the beginning (0-20%) and end (75-95%) of gradient mobile phase, acid concentration in aqueous phase (0-1%), and flow rate (100-300 µl/min) have been investigated for optimization of LC responses peak area and signal to noise ratio (S/N).

The optimized responses obtained using following conditions: organic solvent of 5% at start and 95% at the end of gradient mobile phase, 0.1% acid concentration, and 250 µl/min flow rate. In addition, best sample preparation procedure have been selected by evaluating the effects of two different common types of solvent extraction methods (one step and two step extraction) and four types of clean-up methods including Oasis HLB, MycoSep, immunoaffinity column (IAC) and no clean-up on mycotoxins recoveries. The results of the study showed that the best recoveries (79-109%) for all mycotoxins would be obtained by using one step extraction with no clean up. Finally, the optimized LC-MS/MS method was validated by measuring the selectivity, sensitivity, linearity, accuracy and precision. Limit of Detection (LOD) for AFB₁, AFB₂, AFG₁, AFG₂, DON, T2-Toxin, HT2-Toxin, FB₁, FB₂, OTA and ZEA was 0.05, 0.25, 0.05, 0.5, 2, 2, 10, 10, 0.01, and 0.1, whereas the Limit of Quantification (LOQ) was 0.1, 0.5, 0.1, 1, 10, 4, 4, 20, 20, 0.02, and 0.2 ppb, respectively. Finally, the optimized and validated LC-MS/MS method was applied on real cereal samples (rice, barley, oat, wheat and maize) collected from Malaysian markets. The results showed applicability of the aforementioned method for being
used as fast routine method with high accuracy and precision for simultaneous
determination of mycotoxins in cereal.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PEMBANGUNAN, OPTIMASI DAN VALIDASI KAEDAH LC-MS/MS UNTUK PENGESANAN MULTI-MIKOTOKSIN DALAM BIJIRIN

Oleh

FARHANG SOLEIMANY

April 2011

Pengerusi: Profesor Jinap Selamat, PhD

Fakulti: Sains dan Teknologi Makanan

Mikotoksin merupakan metabolit semulajadi cendawan yang mempunyai pelbagai kesan beracun. Di antara ratusan mikotoksin, aflatoksin (AFS) (AFB$_1$, AFB$_2$, AFG$_1$, dan AFG$_2$), ochratoxin A (OTA), zearalenon (Zea), deoxynivalenol (DON), fumonisins (FB$_1$ dan FB$_2$), T2 dan HT2-racun masalah kesihatan utama bagi manusia dan haiwan domestik sahaja. Pertama, kaedah KCKT telah dibangunkan untuk menyiasat pemisahan mikotoksin dalam kromatografi cair. Dua derivatisasi sistem, fotokimia dan kaedah kimia digunakan untuk derivatisasi dari AFB$_1$ dan AFG$_1$, serta FB$_1$ dan FB$_2$, masing-masing. Kemudian, sebuah kaedah LC-MS/MS telah dibangunkan oleh menilai kesan daripada medan LC (50 dan 150 mm), modifier organik (metanol dan asetonitril) proses pengionan (ESI, APCI) dan mod pengionan (positif dan negatif) pada peminisan dan penentuan mikotoksin. Kemudian kaedah
yang dibangunkan adalah dioptimumkan untuk penentuan serentak dari 11 mikotoksin. Respon permukaan metodologi (RSM) digunakan untuk mengoptimumkan keadaan LC. Pengaruh peratusan pelarut organik di bermula (0-20%) dan akhir (75-95%) dari kecerunan fasa gerak, konsentrasi asid dalam fasa air (0-1%), dan laju aliran (100-300 SSL / minit) telah diselidiki untuk pengoptimuman dari respon luas puncak LC dan isyarat terhadap noise (S/N). Tanggapan dioptimumkan diperolehi dengan menggunakan syarat berikut: pelarut organik 5 di awal dan 95% pada akhir fasa gerak kecerunan, konsentrasi asid 0,1%, dan 250 SSL / min laju aliran. Selain itu, prosedur pembuatan sampel terbaik telah dipilih oleh menilai kesan daripada dua jenis umum yang berbeza kaedah ekstraksi pelarut (satu langkah dan dua langkah ekstraksi) dan empat jenis pembersihan kaedah termasuk Oasis HLB, MycoSep, medan immunoaffinity (IAC) dan tidak ada bersih-up pada pemulihan mikotoksin. Keputusan kajian menunjukkan bahawa pemulihan terbaik (79-109%) untuk semua mikotoksin akan diperolehi dengan menggunakan salah satu langkah ekstraksi tanpa membersihkan. Akhirnya, kaedah LC-MS/MS dioptimumkan disahkan dengan mengukur selektivitas, sensitiviti, Linieritas, ketepatan dan presisi. Tarikh pengesanan (LOD) untuk AFB1, AFB2, AFG1, AFG2, DON, T2-Toxin, HT2-Toksin, FB1, FB2, OTA dan Zea adalah 0.05, 0.25, 0.05, 0.5, 5, 2, 2, 10, 10 , 0,01, dan 0,1, sedangkan Batas kuantifikasi (loq) adalah 0,1, 0,5, 0,1, 1, 10, 4, 4, 20, 20, 0.02, dan 0.2 ppb, masing-masing. Akhirnya, dioptimumkan dan diaktifkan LC-MS/MS kaedah ini diterapkan pada contoh nyata bijirin (beras, barley, oat, gandum dan jagung) yang dikumpulkan dari pasaran Malaysia. Keputusan kajian
menunjukkan penerapan kaedah untuk digunakan sebagai kaedah rutin dengan ketepatan dan presisi tinggi untuk penentuan serentak dari mikotoksin pada bijirin.
I would like to express my deep gratitude to my supervisor, Professor Dr. Jinap Selamat, for her kind guidance, advice, encouragement and financial support throughout the project.

I would like to thanks my supervisory committee members, Dr. Faridah abas and Dr. Alfi Khatib, for their enthusiasm and suggestions.

I owe my loving thanks to my Dear wife Anosheh Rahmani, for her endless patience and encouragement when it was most required. How can I thank you? For your patient, your help giving me, suggestions, listening to my complaints, worries and cheering me up during these years of personal and professional growth. It would not be possible without you…

Sincere appreciation and gratitude to my mother for her love, affection and prayers, and my late father, who always dreamed me to be educated to the highest level. I would like to thank my parent-in-laws for their encouragement, spirit support, and helps.

Thanks to The Universiti Putra Malaysia, for sponsoring this research under Research university grants (RUGs) Fund project No. 02/01/07/0024RU. Thanks to Dr. Seyed Hamed Mirhosseini for useful statistical help.
My warmest thanks go to all present and former colleagues of the center of excellence for food safety research for the bright working environment and encouragement.
I certify that a thesis Examination Committee met on 22 April 2011 to conduct the final examination of Farhang Soleimany on his thesis entitled “Development, Optimization and Validation of LC-MS/MS Method for Multi-mycotoxin Detection in Cereals” in accordance with the Universities and University College Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Mohammad Reza Mozafari, PhD
Associated Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Son Radu, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Farinazleen Mohd Ghazali, PhD
Senior Lecturer
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

John Gilbert, PhD
Professor
Department of Agrobiotechnology
University of Natural Resources and Applied Life Science
Austria
(External Examiner)

NORITAH OMAR, Ph.D.
Associated Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 24 May 2011
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Jinap Selamat, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Faridah Abas, PhD
Doctor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Alfi Khatib, PhD
Doctor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously and is not concurrently submitted for any other degree at UPM or at any other institutions.

FARHANG SOLEIMANY

Date: 22 April 2011
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRAK vi
ACKNOWLEDGEMENTS ix
APPROVAL xi
DECLARATION xiii
LIST OF TABLES xix
LIST OF FIGURES xxi
LIST OF ABBREVIATIONS xxv

CHAPTER

1 INTRODUCTION
 Background of study 1
 Importance of study 3
 Objectives 5

2 LITERATURE REVIEW
 Mycotoxins
 Aflatoxins (AFs) 8
 Occurrence of aflatoxins 9
 Adverse effects of aflatoxins 9
 Regulations of aflatoxins 10
 Ochratoxin A (OTA) 11
 Occurrence of OTA 12
 Adverse effects of OTA 13
 Regulations of OTA 13
 Zearalenone 14
 Occurrence of ZEA 15
 Adverse effects of ZEA 15
 Regulations of ZEA 15
 Thrichothecenes 17
 Deoxynivalenol (DON) 17
 Occurrence of DON 18
 Adverse effects DON 19
 Regulations for DON 19
 Fumonisins (FB1, FB2, FB3) 20
 Occurrence of FBs 21
 Adverse effects FBs 22
 Regulations for FBs 22
 T-2 and HT-2 Toxin 23
 Occurrence of T2 and HT2-Toxin 25
 Adverse effects T2 and HT2-Toxin 25
Regulations for T2 and HT2-Toxin 26
Sampling 27
Sample preparation techniques for the determination of mycotoxins 28
 Extraction of mycotoxins 29
 Liquid-liquid extraction 30
 Clean-up of mycotoxins 31
 Liquid-liquid separation 32
 Solid phase extraction (SPE) 32
 Ion exchange columns 34
 Immunoaffinity column (IAC) 35
 Multifunctional Mycosep Columns 37
Separation and detection techniques for the determination of mycotoxins 38
 Thin layer chromatography (TLC) 39
 Gas chromatography (GC) 42
 High performance liquid chromatography (HPLC) 43
 Photo diode array detection (PDA) 44
 Fluorescence detection (FLD) 45
 Derivatization techniques 46
 Post column photolytic derivatization 47
 Chemical pre column derivatization 48
 Liquid chromatography mass spectrometry (LC-MS) 48
 Ionization techniques 50
 Electrospray-ionization (ESI) 51
 Atmospheric pressure chemical ionization (APCI) 53
 Mass analyzers 55
 Ion trap mass spectrometry 55
 Quadrupole 56
 Time of flight 57
 Mass spectrometry (MS/MS) 58
Application of LC-MS/MS for trace analysis of mycotoxins 60
Validation 65
3 MATERIALS AND METHODS
Materials 66
Instrumentation 67
 HPLC equipment and detectors 67
 LC-MS/MS equipments and parameters 68
Methods 68
 Preparation of stock and working standard of mycotoxins 69
 Preparation of spiked sample 69
 Sample extraction 70
 One step extraction 70
 Two steps extraction 70
 Sample clean-up methods 71
 Sample clean-up by MycoSep 226 71
 Sample clean-up by Oasis HLB column 71
4 SIMULTANEOUS DETERMINATION OF MYCOTOXINS USING RP-HPLC-PDA-FLD WITH PHRED AND POST-COLUMN DERIVATIZATION SYSTEM

Introduction 75
Materials and methods 77
 Chemicals and materials 78
 Stock and working standard preparation 78
 Instrumentation 78
 Samples 78
 Sample preparation 78
 HPLC method development 79
 HPLC method Validation 81
 Linearity 81
 Sensitivity 81
 Recovery 82
Result and discussion 82
 HPLC condition 82
 HPLC method development 83
Method validation 87
Application to real sample 88
Conclusion 90

5 DEVELOPMENT OF A LC-MS/MS METHOD FOR SIMULTANEOUS DETERMINATION OF AFLATOXINS, OCHRATOXIN A, ZEARALENONE, DEOXYNIVALENOL, FUMONISINS, T2 AND HT2-TOXIN

Introduction 92
Materials and methods 94
 Chemicals and reagents 94
 Instrumentation 94
 Stock and working standard preparation 94
 LC-MS/MS method development 95
 Statistical analysis 95
Results and discussion 95
 MS/MS method development 95
 Development of mobile phase program 103
 Effect of injection volume 104
 Selection of ionization method and mode 104
Conclusions 110
OPTIMIZATION OF THE UPLC-MS/MS METHOD FOR SIMULTANEOUS DETERMINATION OF AFLATOXINS, OTA, ZEA, DON, FUMONISINS, T2 AND HT2-TOXIN USING EXPERIMENTAL DESIGN

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>111</td>
</tr>
<tr>
<td>Materials and methods</td>
<td>112</td>
</tr>
<tr>
<td>Chemicals and Materials</td>
<td>113</td>
</tr>
<tr>
<td>Instrumentation</td>
<td>113</td>
</tr>
<tr>
<td>Stock and working standard preparation</td>
<td>113</td>
</tr>
<tr>
<td>LC-MS/MS method optimization</td>
<td>113</td>
</tr>
<tr>
<td>Statistical analysis</td>
<td>114</td>
</tr>
<tr>
<td>Results and discussion</td>
<td>115</td>
</tr>
<tr>
<td>Optimization using central composite design</td>
<td>115</td>
</tr>
<tr>
<td>Interpretation of response surface model</td>
<td>126</td>
</tr>
<tr>
<td>Fitting the model</td>
<td>138</td>
</tr>
<tr>
<td>Validation and verification of the models</td>
<td>140</td>
</tr>
<tr>
<td>Conclusion</td>
<td>147</td>
</tr>
</tbody>
</table>

EVALUATING SAMPLE PREPARATION METHODS FOR THE SIMULTANEOUS DETERMINATION OF AFLATOXINS, OTA, ZEA, DON, FUMONISINS, T2 AND HT2-TOXIN IN CEREALS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>148</td>
</tr>
<tr>
<td>Materials and methods</td>
<td>152</td>
</tr>
<tr>
<td>Chemicals and materials</td>
<td>152</td>
</tr>
<tr>
<td>Stock and working standard preparation</td>
<td>152</td>
</tr>
<tr>
<td>Spiked sample preparation</td>
<td>152</td>
</tr>
<tr>
<td>Instruments</td>
<td>153</td>
</tr>
<tr>
<td>LC-MS/MS conditions</td>
<td>153</td>
</tr>
<tr>
<td>Selection of extraction method</td>
<td>153</td>
</tr>
<tr>
<td>Selection of clean-up methods</td>
<td>154</td>
</tr>
<tr>
<td>Statistical analysis</td>
<td>154</td>
</tr>
<tr>
<td>Results and discussions</td>
<td>155</td>
</tr>
<tr>
<td>Comparison of extraction and clean-up methods</td>
<td>155</td>
</tr>
<tr>
<td>Conclusion</td>
<td>168</td>
</tr>
</tbody>
</table>

SINGLE LABORATORY LC-MS/MS METHOD VALIDATION FOR SIMULTANEOUS DETERMINATION OF AFLATOXINS, OTA, ZEA, DON, FUMONISINS, T2-TOXIN AND HT2-TOXIN IN CEREALS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>169</td>
</tr>
<tr>
<td>Materials and methods</td>
<td>170</td>
</tr>
</tbody>
</table>
Chemicals and reagents 170
Stock and working standard preparation 171
Samples 171
Spiked sample preparation 171
Sample preparation for analysis 171
Instrumentation 172
Validation procedure 172
Results and discussions 174
Specificity 174
Linearity 178
Sensitivity 184
Accuracy and Precision 186
Robustness 192
Application on real cereal samples 193
Conclusion 196

9 SUMMARY, GENERAL CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH

Conclusion 198
Recommendation 199

REFERENCES 203
BIODATA OF STUDENT 231
LIST OF PUBLICATIONS 232