UNIVERSITI PUTRA MALAYSIA

PREVALENCE AND RISK ASSESSMENT OF SALMONELLA SPP. IN SLICED FRUIT

PUI CHAI FUNG

FSTM 2011 2
PREVALENCE AND RISK ASSESSMENT OF SALMONELLA SPP.
IN SLICED FRUIT

PUI CHAI FUNG

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2011
PREVALENCE AND RISK ASSESSMENT OF SALMONELLA SPP. IN SLICED FRUIT

By

PUI CHAI FUNG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Master of Science

March 2011
Dedicated to my beloved mum (Chu Su Chey), family and friends for their eternity love and endless support
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the Master of Science

PREVALENCE AND RISK ASSESSMENT OF SALMONELLA SPP. IN SLICED FRUIT

By

PUI CHAI FUNG

March 2011

Chairman: Professor Son Radu, PhD

Faculty: Food Science and Technology

Fresh fruits and vegetables are increasingly recognized as a source of salmonellosis outbreaks in many parts of the world. Such products are always eaten raw or with minimal processing and if contaminated with *Salmonella*, they may represent a health hazard to the consumers. The public health importance of *Salmonella* in man led the present study to determine the prevalence and quantity of *Salmonella* spp., *Salmonella* Typhi and *Salmonella* Typhimurium in sliced fruits. In domestic kitchen, the food contact surfaces are sometimes improperly cleaned which ease the formation of biofilm by *Salmonella*. Subsequent detachment from the biofilm layer can be at risk for contamination of fresh fruits and vegetables. Hence, the quantification of biofilm formed by *Salmonella* Typhi and *Salmonella* Typhimurium on plastic cutting board used in domestic kitchen was
determined in this study prior to analyzing the transfer rate of these two pathogens to the fruit model.

The most probable number (MPN)-multiplex polymerase chain reaction (PCR) was used for the prevalence and quantification studies. A multiplex PCR was optimized for the simultaneous detection of *Salmonella* spp., *Salmonella Typhi* and *Salmonella Typhimurium* in sliced papaya, watermelon, mango, sapodilla, jackfruit, dragon fruit and honeydew. The prevalence of *Salmonella* spp., *Salmonella Typhi* and *Salmonella Typhimurium* in 210 samples of sliced fruits examined were 23.3%, 7.6% and 3.8%, respectively with estimated quantity varied from 0 to 19 MPN/g. On the other hand, the prevalence of *Salmonella* spp. discovered from the total sliced fruits of hawker stalls were three times higher than those from hypermarkets at 30% and 10% respectively at p<0.05. *Salmonella* spp. were detected in 23.3% fruit samples using MPN-multiplex PCR and at 9.5% using MPN-plating method.

Out of the seven types of fruits examined, dragon fruit from hawker stalls showed the highest prevalence of contamination with 75% *Salmonella* spp., 40% *Salmonella Typhi* and 25% *Salmonella Typhimurium*. Hence, it was used as the fruit model to study the biofilm formation by *Salmonella Typhi* and *Salmonella Typhimurium* on plastic cutting board and their subsequent transfer to dragon fruit. By using crystal violet assay, it was found that
biofilm formation of *Salmonella* Typhi and *Salmonella* Typhimurium on plastic cutting board was the highest at 12 h when they are incubated in physiological saline solution at 28°C. On the transfer of these two pathogens from plastic cutting board to dragon fruit, results showed their mean transfer percentages were 92.38 and 91.30% respectively for *Salmonella* Typhi and *Salmonella* Typhimurium. These highlighted that biofilm can cross-contaminate dragon fruit and contribute to cross-infection. As a conclusion, there is a need for the health authority to look into the risk assessment of sliced fruits in Malaysia. The risk of microbial transfer from food contact surface to fresh fruits should also be of concern to prevent foodborne disease outbreaks.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PREVALEN DAN PENILAIAN RISIKO SALMONELLA SPP.
DALAM BUAH HIRISAN

Oleh

PUI CHAI FUNG

Mac 2011

Chairman: Profesor Son Radu, PhD

Faculty: Sains dan Teknologi Makanan

dihasilkan oleh *Salmonella* Typhi dan *Salmonella* Typhimurium pada permukaan papan potong plastik yang digunakan di dapur ditentukan terlebih dahulu, sebelum menganalisa kadar pemindahan kedua-dua patogen ini kepada model buah.

Most probable number (MPN)-multiplex polymerase chain reaction (PCR) telah digunakan untuk kajian prevalen dan kuantifikasi. Multiplex-PCR dioptimumkan untuk mengesan *Salmonella* spp., *Salmonella* Typhi dan *Salmonella* Typhimurium secara serentak dalam hirisan betik, tembikai, mangga, ciku, nangka, buah naga dan tembikai susu. Prevalen *Salmonella* spp., *Salmonella* Typhi dan *Salmonella* Typhimurium pada 210 sampel buah-buahan hirisan yang dikaji adalah masing-masing 23.3%, 7.6% dan 3.8% dengan jangkaan kuantiti berbeza daripada 0 hingga 19 MPN/g. Selain daripada itu, didapati bahawa prevalen *Salmonella* spp. pada buah-buahan hirisan dari gerai penjaja adalah tiga kali ganda lebih tinggi berbanding dengan buah-buahan dari pasar raya besar, masing-masing sebanyak 30% dan 10% pada p<0.05. Dengan menggunakan kaedah MPN-multiplex PCR, sebanyak 23.3% sampel telah dikesan mengandungi *Salmonella* spp. dan, hanya 9.5% apabila menggunakan kaedah MPN-plating.

Daripada tujuh jenis buah-buahan yang dikaji, buah naga dari gerai penjaja menunjukkan prevalen kontaminasi tertinggi dengan 75% *Salmonella* spp.,
ACKNOWLEDGEMENTS

I would like to express my sincere and deepest appreciation to Professor Dr. Son Radu, the chairman of my supervisory committee for the invaluable guidance and support throughout my study. Thank you very much for the advice and motivation which bring me a step closer to my dream.

A million thanks to my co-supervisors, Associate Professor Dr. Cheah Yoke Kqueen from Faculty of Medicine and Health Sciences and Dr. Farinazleen Mohamad Ghazali from Faculty of Food Science and Technology for the advice and encouragement throughout my study. Thank you very much!

Sincere thanks to all my dearest laboratory colleagues (Dr. Chai Lay Ching, Dr. John Tang Yew Huat, Jeyaletchumi Ponniah, Lee Hai Yen, Noorlis Ahmad, Tuan Zainazor Tuan Chilek, Tunung Robin, Afriani Sandra, Chai Li Fen, Elexson Nilian, Jeshveen Singh, Mohd. Zarrul Nizam Bin Zaaba, Noor Hidayah bt. Mohd. Shahreni, Petrus Edmund, Ubong Anyi and Wong Woan Chwen). All of you have enlightened my life. Thank you for the help and assistance given to me. I will remember the laughter and sweet memories while working with all of you.
Not forgetting to acknowledge all my dearest friends especially Cindy Thing, Kon Mee Jing, Suyi Yap, Victoria Lee and Wong Woan Chwen who support me morally and accompany me throughout my study. Thank you very much for the love and care given to me. My sincere gratitude is extended to all staffs and colleagues of Faculty of Food Science and Technology, UPM, who contributed one way or another towards the completion of my study.

This thesis is especially dedicated to my dearest mother (Chu Su Chey) who is the VIP in my life and also to my family members. Thank you very much for everything, the sacrifices and endless love for me. Without your support, I will never move this far in my life. I love you all!
I certify that a Thesis Examination Committee has met on 24 March 2011 to conduct the final examination of Pui Chai Fung on her thesis entitled “Prevalence and Risk Assessment of *Salmonella* Spp. in Sliced Fruit” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Mohd Yazid bin Abd Manap, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Saleha binti Abdul Aziz, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Shuhaimi bin Mustafa, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

I. Karunasagar, PhD
Professor
Karnataka Veterinary, Animal and Fisheries Science University
India
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 24 May 2011
APPROVAL

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Son Radu, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Cheah Yoke Kqueen, PhD.
Associate Professor
Faculty of Medical and Health Sciences
Universiti Putra Malaysia
(Member)

Farinazleen Mohamad Ghazali, PhD
Senior Lecturer
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is nor concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

PUI CHAI FUNG

Date: 24 March 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER

1 GENERAL INTRODUCTION
 1.1 Introduction 1
 1.2 Objectives 5

2 LITERATURE REVIEW
 2.1 *Salmonella* spp. 6
 2.1.1 History background 6
 2.1.2 Classification and nomenclature 8
 2.1.3 Characteristic 11
 2.1.4 Clinical manifestation 11
 2.1.5 Epidemiology 17
 2.1.6 Pathogenicity 21
 2.1.7 Transmission vehicles 23
 2.1.8 Antibiotic resistance 32
 2.1.9 Biofilm formation 33
 2.1.10 Quorum sensing 36
 2.2 Isolation and identification of *Salmonella* spp. 38
 2.2.1 Conventional methods 38
 2.2.2 Rapid methods 40
 2.2.3 Quantitative-qualitative methods 43
 2.3 Molecular typing of *Salmonella* spp. 45
 2.3.1 Nucleic acid amplification 45
 2.3.2 Nucleotide sequencing technique 46
 2.3.3 Restriction endonuclease digestion 47
 2.4 Control and prevention 50
 2.4.1 Guidelines for the control of *Salmonella* infection 50
 2.4.2 Guidelines for the control of biofilm formation by *Salmonella* 54
3 OPTIMIZATION OF MULTIPLEX PCR FOR THE DETECTION OF SALMONELLA SPP., SALMONELLA TYPHI AND SALMONELLA TYPHIMURIUM IN SLICED FRUITS
3.1 Introduction 56
3.2 Materials and methods 58
 3.2.1 Bacterial strains and culture conditions 58
 3.2.2 DNA template preparation 59
 3.2.3 Oligonucleotide primers 59
 3.2.4 Multiplex PCR amplification 60
 3.2.5 Agarose gel electrophoresis 62
 3.2.6 Optimization of multiplex PCR 62
 3.2.7 Specificity of multiplex PCR 62
3.3 Results 63
3.4 Discussion 67
3.5 Conclusion 71

4 PREVALENCE AND QUANTITY OF SALMONELLA SPP., SALMONELLA TYPHI AND SALMONELLA TYPHIMURIUM IN SLICED FRUITS IN MALAYSIA
4.1 Introduction 72
4.2 Materials and methods 74
 4.2.1 Sample collection 74
 4.2.2 Most probable number (MPN) method 75
 4.2.3 Plating method 76
 4.2.4 DNA extraction 76
 4.2.5 Multiplex PCR 77
 4.2.6 Statistical analysis 78
4.3 Results 80
4.4 Discussion 86
4.5 Conclusion 90

5 BIOFILM FORMATION BY SALMONELLA TYPHI AND SALMONELLA TYPHIMURIUM ON PLASTIC CUTTING BOARD AND ITS TRANSFER TO DRAGON FRUIT
5.1 Introduction 91
5.2 Materials and methods 95
 5.2.1 Bacterial strains and culture conditions 95
 5.2.2 Test surfaces 95
 5.2.3 Biofilm formation on plastic cutting board 96
 5.2.4 Transfer of Salmonella Typhi and Salmonella Typhimurium biofilm from plastic cutting board to dragon fruit 97
 5.2.5 Statistical analysis 98
5.3 Results 99
5.4 Discussion 102
5.5 Conclusion 106

6 GENERAL CONCLUSION AND DISCUSSION 107

REFERENCES 112
APPENDIX A 131
APPENDIX B 140
BIODATA OF STUDENT 147
LIST OF PUBLICATIONS 149