CHARACTERIZATION OF THERMOPHILIC CAMPYLOBACTER SPP. IN COMMERCIAL BROILER CHICKEN FROM FARM TO RETAIL

JOHN TANG YEW HUAT

FSTM 2010 9
CHARACTERIZATION OF THERMOPHILIC CAMPYLOBACTER SPP. IN COMMERCIAL BROILER CHICKEN FROM FARM TO RETAIL

By

JOHN TANG YEW HUAT

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

October 2010
Dedicated to beloved wife (Sapphire), parents, and brothers for their endless love and support
The public health importance of thermophilic Campylobacter in man and limited data available in Malaysia led the present study to determine the prevalence of thermophilic Campylobacter from farm to retail and its potential of cross-contamination to cooked food. Campylobacter isolates were tested for their resistance and Multiple Antibiotic Resistance (MAR) index was determined. Currently, Campylobacter jejuni (physiology and metabolism) have not been fully understood. Thus, C. jejuni ATCC 33560 physiology and metabolism was being investigated using Phenotypic MicroArray (PM) technology to provide insight of C. jejuni carbon source
utilisation and sensitivity towards osmolytes and pH. Prevalence of *Campylobacter* in chickens from farm to retail was determined using plating and Polymerase Chain Reaction (PCR) method. This study found no *Campylobacter* detected in cloacal swabs from chickens in farms practising close-house system but occurred at 95.0% in farms practising open-house systems. Prevalence of *Campylobacter* in chicken samples from conventional slaughterhouse and processing plant was 84.0% and 94.0%, respectively while *Campylobacter* contamination in chicken samples at wet market and supermarket was 78.0% and 92.0%, respectively. These showed chicken products are highly contaminated and it would be informative to know the *Campylobacter* load in chickens sold at retail level. *Campylobacter* load in chicken’s parts is determined using MPN-PCR method. Current investigation showed chicken meats and chicken by-products were contaminated with *Campylobacter* with their numbers ranged from <3 to 4600 MPN/g. In this study, chicken keels, chicken livers and gizzards harboured higher concentration of *Campylobacter* at 10^3-10^4 MPN/g compared to other chicken parts at 4.3%, 33.3% and 9.2%, respectively. Such high numbers of *Campylobacter* in chicken parts pose risk of human ingestion through contaminated food. Thus, *C. jejuni* cross-contamination from raw to cooked chickens was investigated. *Campylobacter jejuni* was
found to contaminate cooked food regardless the food was left at room temperature (28±0.5°C) or taken directly from boiling water (100±0.5°C). Scored cutting boards were found to trap and transfer greater number of C. jejuni compared to untreated or new cutting boards. Scored cutting board made from rubberwood showed greater risk of cross-contamination than scored cutting board made from polyethylene. There was no significant different (P>0.05) between two types of cutting boards in untreated condition with regards to the number of C. jejuni transferred to cooked samples. Brief contact between raw chicken with cutting board was sufficient to contaminate the cutting board with C. jejuni. Hot samples rapidly lose heat (72-76°C) after taken from boiling water with the cutting process accelerated the heat loss. The findings suggested there are possibilities of Campylobacter being ingested by human through cooked chickens if proper hygienic practise is not practised in kitchen. Thus, it would be important to determine the antibiotic susceptibility profiles of Campylobacter isolates from chickens that might be ingested by consumers as this will determine the effectiveness of antibiotic regimen prescribed for infected individuals. Antibiotic susceptibility test was carried out on 126 Campylobacter isolated from retail commercial broiler chickens. Campylobacter showed high resistance to erythromycin (97.6%) and
tetracycline (92.9%) while low resistance to gentamicin (35.7%) and nalidixic acid (35.7%). *Campylobacter* showed resistance towards all groups of antibiotics tested, namely beta-lactam (87.7%), cephalosporins (69.8%), quinolones (65.3%), chloramphenicols (84.9%), macrolides (97.6%), aminoglycosides (68.8%) and tetracyclines (92.9%). Of 126 *Campylobacter* spp. isolates, 0.8% showed resistant to five or less antibiotics, 60.3% showed antibiotic resistance to between six to ten antibiotics and 38.9% isolates showed resistance to more than 10 antibiotics. All isolates of *Campylobacter* spp. showed MAR index more than 0.20 which indicated there are abuse in antibiotic usage in chicken farming. In addition to antibiogram information, the present study also aimed to investigate the physiology and metabolism of *Campylobacter* that enable it to survive all the processes despite its fastidious characteristics and sensitivity to environmental stresses. The present study employed Phenotypic MicroArray (PM) technology to investigate *C. jejuni* metabolism and physiology. Phenotypic MicroArray (PM) profiles *C. jejuni* ATCC 33560 showed utilization of carbon sources from amino acids and carboxylates but not from sugars. *Campylobacter jejuni* ATCC 33560 is sensitive to NaCl at 2% and above but showed survival in a wide range of food preservatives (sodium lactate, sodium phosphate, sodium benzoate, ammonium sulphate and sodium nitrate). No phenotype
loss was observed in carbon source plates when *C. jejuni* was incubated at suboptimal temperature. Phenotype loss of *C. jejuni* ATCC 33560 was observed in sodium chloride (1%), sodium sulphate (2-3%), sodium formate (1%), sodium lactate (7-12%), sodium phosphate pH 7 (100 mM and 200 mM), ammonium sulphate pH 8 (50 mM), sodium nitrate (60 mM, 80 mM and 100 mM), sodium nitrite (10 mM), and growth in pH 5. These results suggested that *C. jejuni* is still metabolically active at suboptimal growth temperature. This is the first study conducted in Malaysia to study the prevalence of *Campylobacter* in commercial broiler chickens from farm to retail, its cross contamination in food preparation as well as its physiology and metabolism. It can be concluded from this study that farm biosecurity is important to control *Campylobacter*. Despite the absence of *Campylobacter* in close-house farms, *Campylobacter* contamination in chickens at slaughterhouses and retails was still prevalent. Farmers, poultry processing plant operators and consumers should be aware of the importance of *Campylobacter* to human health and how to prevent its infection.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENCIRIAN CAMPYLOBACTER SPP. TERMOFILIK PADA AYAM PEDAGING DARI LADANG KE TAHAP PENJUALAN

Oleh

JOHN TANG YEW HUAT

Oktober 2010

Pengerusi: Farinazleen Mohamad Ghazali, PhD

Fakulti: Sains dan Teknologi Makanan

Kepentingan implikasi Campylobacter termofilik ke atas kesihatan manusia serta data yang terhad di Malaysia mendorong kajian ini dilaksanakan untuk menentukan prevalen Campylobacter termofilik dari ladang ke tahap jualan serta potensi Campylobacter untuk kontaminasi makanan masak. Isolat Campylobacter diuji kerintangan terhadap antibiotic-antibiotik untuk menentukan tahap rintangan dan indeks Rintangan Pelbagai Antibiotik (RPA). Buat masa kini, fisiologi dan metabolisme C. jejuni belum diketahui sepenuhnya. Oleh hal yang demikian, fisiologi dan metabolisma C. jejuni
ATCC 33560 dikaji dengan menggunakan teknologi “Phenotypic MicroArray (PM)” untuk memberi maklumat C. jejuni ATCC 33560 dalam penggunaan sumber karbon serta sensitiviti terhadap osmolit and pH. Prevalen Campylobacter dalam ayam dari ladang ke tahap jualan ditentukan dengan menggunakan kaedah plat dan Polymerase Chain Reaction (PCR). Campylobacter tidak dikesan dalam swab kloaka ayam yang diusahakan dalam ladang sistem rumah tertutup tetapi sebanyak 95.0% swab kloaka adalah positif dalam ladang sistem rumah terbuka. Prevalen Campylobacter dalam sampel ayam dari rumah penyembelihan konvensional dan kilang pemprosesan pada 84.0% dan 94.0% masing-masing manakala kontaminasi Campylobacter turut berlaku pada sampel pasar pagi (78.0%) dan supermarket (92.0%). Keputusan ini menunjukkan produk ayam mempunyai kontaminasi yang tinggi dan adalah penting untuk mengetahui bilangan Campylobacter yang hadir dalam ayam yang dijual pada peringkat jualan. Dalam kajian ini, keputusan menunjukkan kontaminasi Campylobacter daging serta bahan sampingan ayam berlaku dari <3 hingga 4600 MPN/g. Kajian ini menunjukkan dada, hati dan tonkeng ayam mempunyai konsentrasi Campylobacter (10³-10⁴ MPN/g) yang lebih tinggi berbanding dengan sampel ayam yang lain dengan peratusan 4.3%, 33.3% dan 9.2% masing-masing. Bilangan Campylobacter yang tinggi dalam bahagian ayam
menyebabkan risiko infeksi kepada manusia melalui makanan yang terkontaminasi. Oleh hal yang demikian, kajian dilakukan untuk mengetahui kemungkinan kontaminasi silang C. jejuni dari ayam mentah ke ayam masak. C. jejuni didapati mampu mengkontaminasi makanan yang telah dimasak dalam keadaan suhu bilik (28±0.5°C) dan keadaan panas (diambil terus dari air didih (100±0.5°C)). Papan potong yang dicalarkan didapati memerangkap dan memindahkan lebih banyak C. jejuni berbanding dengan papan potong yang tidak dicalarkan ataupun baru. Papan potong calar yang dibuat daripada “rubberwood” menunjukkan risiko kontaminasi yang lebih tinggi berbanding dengan papan potong yang dibuat daripada “polyethylene”. Bilangan C. jejuni yang dipindahkan kepada makanan masak adalah tidak signifikan (P>0.05) antara kedua-dua papan potong yang tidak calar. Kontak sementara antara ayam mentah dengan papan potong adalah memadai untuk mengkontaminasi papan potong dengan C. jejuni. Ayam masak panas hilang haba (72-76°C) dengan cepat sejurus selepas dikeluarkan daripada air didih dan proses pemotongan mempercepatkan kehilangan haba. Hasil kajian ini menunjukkan kemungkinan Campylobacter dimakan oleh manusia melalui makanan sekitanya amalan kebersihan tidak diamalkan dalam dapur. Oleh itu, adalah penting untuk mengetahui profil sensitifiti antibiotik isolat
Campylobacter dari ayam yang mungkin dimakan oleh manusia kerana ini akan menentukan keberkesanan antibiotik yang diberi kepada individu yang dijangkiti. Sensitiviti antibiotik diuji ke atas 126 isolat Campylobacter spp. dari ayam daging pada tahap jualan. Campylobacter spp. menunjukkan rintangan tinggi terhadap eritromisin (97.6%) dan tetrasiklin (92.9%) serta rintangan rendah terhadap gentamisin (35.7%) dan asid nalidisik (35.7%). Campylobacter spp. menunjukkan rintangan terhadap semua kumpulan antibiotik yang diuji seperti beta-laktam (87.7%), sefalosporin (69.8%), kuinolon (65.3%), kloramfenikol (84.9%), makrolid (97.6%), aminoglikosid (68.8%) dan tetrasiklin (92.9%). Daripada 126 isolat Campylobacter spp., 0.8% menunjukkan rintangan antibiotik kepada lima atau kurang antibiotik, 60.3% menunjukkan rintangan kepada enam hingga sepuluh antibiotik dan 38.9% menunjukkan rintangan kepada lebih sepuluh antibiotik. Semua isolate Campylobacter spp. menunjukkan indeks RPA melebihi 0.20. Selain maklumat antibiogram, kajian ini turut bertujuan untuk mengkaji fisiologi dan metabolisme Campylobacter yang membolehkannya untuk mandiri dalam pelbagai proses sedangkan sifatnya yang sensitive terhadap tekanan. Kajian ini menggunakan teknologi Phenotypic MicroArray (PM) untuk mengkaji metabolisme dan fisiologi Campylobacter. Profil “Phenotypic MicroArray (PM)” C. jejuni ATCC 33560 menunjukkan penggunaan sumber
karbon dari asid amino dan karbosilat tetapi bukan daripada gula. C. jejuni ATCC 33560 adalah sensitif terhadap NaCl pada 2% ke atas tetapi menunjukkan kemandirian dalam pengawet makanan pada julat yang luas (sodium laktat, sodium fosfat, sodium benzoat, ammonium sulfat dan sodium nitrat). Tiada kehilangan fenotipik diperhatikan dalam plat sumber karbon apabila C. jejuni dieramkan pada suhu suboptimal. Kehilangan fenotipik C. jejuni ATCC 33560 diperhatikan dalam sodium klorid (1%), sodium sulfat (2-3%), sodium format (1%), sodium laktat (7-12%), sodium fosfat pH 7 (100 mM dan 200 mM), sodium nitrit (10 mM), dan pertumbuhan dalam pH 5.

Keputusan ini menunjukkan C. jejuni masih aktif secara metabolic pada suhu suboptimal. Ini adalah kajian pertama dijalankan di Malaysia untuk mengkaji kehadiran Campylobacter dalam ayam pedaging komersil dari ladang hingga ke tahap jualan, kontaminasi silang serta fisiologi dan metabolismenya. Kajian ini boleh dirumuskan bahawa biosecuriti ladang adalah penting dalam kawalan Campylobacter. Akan tetapi, kontaminasi Campylobacter pada rumah penyembelihan dan peringkat jualan masih tinggi. Oleh hal yang demikian, peladang, operator plan pemprosesan ayam serta pengguna harus menyetradi kepentingan Campylobacter terhadap kesihatan manusia dan bagaimana untuk menghindari daripada dijangkiti.
ACKNOWLEDGEMENTS

I would like to dedicate my heartfelt thanks to Dr. Farinazleen Mohamad Ghazali, the chairman of my supervisory committee for her continuous support and guidance throughout my study that help me to finish my study.

My sincere appreciation and gratefulness to Professor Dr. Son Radu for his invaluable guidance, advices and supports that led to the completion of my Ph.D study.

A million thanks to Professor Dr. Saleha Abdul Aziz, my co-supervisor for her expertise in this field. She gave constructive comments and advices to improve my work. Thank you very much for your trust and kindness. It will remains forever in my heart.

Special and million thanks to Dr. Jalila Abu for her guidance and help to assist me to locate and get into farms. Not forget Dr. Jeffrey Carlson, Biolog, Inc., USA, for his valuable guidances, supports and comments.
I also like to say thank you to all of my dearest friends and lab mates (Dr. Chai, Natasha, Chai Fung, Woan Chwen, Eddie, Petrus, Ubong, Tuan Zaina, Kak Noorlis, Jeshveen, Jeya, Sandra, Tunung, Sam, Chui Mei, Abbie, Margaret, Zarrul, Zach and Indah). All of you have enlightened my life and I will always remember the sweet memories and experience working with all of you.

To my mother, without your sacrifices and supports, I will never move this far in my life. Thank you very much! Not to forget my father, my family and Sapphire for their endless support and encouragement in my study.

My sincere thanks to all colleagues and staff of Faculty of Food Science and Technology, UPM, who contributed one way or another towards the completion of my study.
APPROVAL

I certify that an Examination Committee has met on 6 October 2010 to conduct the final examination of John Tang Yew Huat on his degree thesis entitled “Prevalence, enumeration and characterization of thermophilic Campylobacter spp. in commercial broiler chicken from farm to retail” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the degree of Doctor of Philosophy. Members of the Examination Committee were as follows:

Md. Zaidul Islam Sarker, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Nazamid Saari, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Fatimah Abu Bakar, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Venugopal, PhD
Professor
Department of Fisheries Microbiology
Karnataka Veterinary, Animal and Fisheries Sciences University
Mangalore, Pin. 575002, India
(External Examiner)

SHAMSUDDIN SULAIMAN, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

xv
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Farinazleen Mohamad Ghazali, PhD
Senior Lecturer
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Son Radu, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Saleha Abdul Aziz, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI , PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

xvi
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is nor concurrently, submitted for any other degree at Universiti Putra Malaysia or any other institution.

JOHN TANG YEW HUAT

Date: 6 October 2010
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>viii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xiii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xv</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxviii</td>
</tr>
</tbody>
</table>

CHAPTER

1 GENERAL INTRODUCTION

1.1 Introduction 1

1.2 Objectives 4

2 LITERATURE REVIEW

2.1 Campylobacter 5

2.1.1 Discovery of *Campylobacter* 5

2.1.2 Taxonomy 7

2.1.3 Characteristic of genus *Campylobacter* 8

2.1.4 Survival strategies of *Campylobacter* 13

2.2 *Campylobacter* in food 21

2.2.1 Meats 21

2.2.2 Dairy 23

2.2.3 Water and seafood 25

2.2.4 Vegetables 26

2.3 *Campylobacter* contamination in poultry 27

2.3.1 Farm 27

2.3.2 Slaughterhouse 30

2.3.3 Cross-contamination during food preparation 32

2.4 Detection and identification of *Campylobacter* 34

2.4.1 International Standard Organization 36

2.4.2 Enumeration methods 38

2.5 *Campylobacter* infection in man – illnesses and
sequelae due to campylobacteriosis 41
2.5.1 Role of poultry meat as the source of Campylobacter infection in man 43
2.5.2 Campylobacter resistance towards antibiotics 44
2.6 Controls and prevention 47
2.7 Poultry production and pathogen surveillance in Malaysia 49

3 PREVALENCE THERMOPHILIC CAMPYLOBACTER SPP. IN CHICKENS AT FARM, SLAUGHTER HOUSE AND RETAIL
3.1 Introduction 53
3.2 Materials and methods 54
 3.2.1 Bacteria strain 54
 3.2.2 Sample collection 55
 3.2.3 Samples enrichment and Campylobacter spp. isolation 58
 3.2.4 DNA extraction and PCR assay 59
 3.2.5 Statistical analysis 61
3.3 Results 64
3.4 Discussion 73
3.5 Conclusion 77

4 PREVALENCE AND NUMBERS OF THERMOPHILIC CAMPYLOBACTER SPP. IN CHICKEN MEATS AND BY-PRODUCTS
4.1 Introduction 78
4.2 Materials and methods 80
 4.2.1 Sample collection 80
 4.2.2 Enrichment 81
 4.2.3 Culturing method 83
 4.2.4 Most Probable Number (MPN) 84
 4.2.5 DNA extraction 86
 4.2.6 PCR assay 87
 4.2.7 Statistical Analysis 88
4.3 Results 89
4.4 Discussion 99
4.5 Conclusion 106
5 CROSS-CONTAMINATION OF CAMPYLOBACTER JEJUNI FROM RAW TO COOKED CHICKEN.
5.1 Introduction 107
5.2 Materials and methods 109
 5.2.1 Cutting boards materials 109
 5.2.2 Sampling and cross-contamination scenarios 110
 5.2.3 Detection and enumeration of C. jejuni 112
 5.2.4 Data analysis 115
5.3 Results 115
5.4 Discussion 124
5.5 Conclusion 127

6 ANTIBIOTIC SUSCEPTIBILITY TESTING OF CAMPYLOBACTER SPP. ISOLATED FROM BROILER CHICKEN
6.1 Introduction 129
6.2 Materials and methods 131
 6.2.1 Campylobacter spp. isolates 131
 6.2.2 Antibiotic susceptibility test 131
 6.2.3 Multiple Antibiotic Resistances (MAR) indexing of isolates 132
6.3 Results 133
6.4 Discussion 139
6.5 Conclusion 148

7 CAMPYLOBACTER JEJUNI ATCC 33560 METABOLISM AND SENSITIVITY TO OSMOLYTES AND pH IN RESPONSE TO TEMPERATURE.
7.1 Introduction 150
7.2 Materials and methods 152
 7.2.1 Bacteria strain 152
 7.2.2 Preparation of PM1 and PM2A 152
 7.2.3 Preparation of PM9 and PM10 153
 7.2.4 Incubation and data recording 154
7.3 Results 155
7.4 Discussion 161
7.5 Conclusion 163
SUMMARY, CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH

REFERENCES 171
APPENDIX A 211
APPENDIX B 215
APPENDIX C 225
BIODATA OF STUDENT 234
LIST OF PUBLICATIONS 238