

UNIVERSITI PUTRA MALAYSIA

PRODUCTION OF ANGIOTENSIN CONVERTING ENZYME INHIBITORY PEPTIDES FROM RED TILAPIA PROTEIN HYDROLYSATES

MARYAM SHAMLOO

FSTM 2010 19

PRODUCTION OF ANGIOTENSIN CONVERTING ENZYME INHIBITORY PEPTIDES FROM RED TILAPIA PROTEIN HYDROLYSATES

By

MARYAM SHAMLOO

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

December 2010

i

To My Parents

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

PRODUCTION OF ANGIOTENSIN CONVERTING ENZYME INHIBITORY PEPTIDES FROM RED TILAPIA PROTEIN HYDROLYSATES

By

MARYAM SHAMLOO

December 2010

Chairman : Professor Jamilah bt. Bakar, PhD

Faculty : Food Science and Technology

Fish proteins are considered as valuable nutrient and a good source of many bioactive peptides such as angiotensin converting enzyme (ACE) inhibitory peptides. Very few reports are available on the ACE inhibitory peptides in freshwater fish hydrolysates. Therefore, this study was carried out with the objective to produce tilapia protein hydrolysates by commercial proteases, named Alcalase, Flavourzyme and Protamex, investigating the ACE (Angiotensin Converting Enzyme) inhibitory activity, the radical scavenging ability and identifing the best enzyme to produce the highest bioactivity; optimizing the production of ACE inhibitory peptides using response surface methodology (RSM); and to fractionate the ACE inhibitory peptides using an in *vitro* method and the IC₅₀ (peptide concentration which reduced ACE inhibitory by 50%) was calculated. The result indicated that Alcalase was the best enzyme to

produce tilapia hydrolysates since it had the highest ACE inhibitory activity when compared to Protamex and Flavourzyme. A central composite design (CCD) involving 16 cube points, 8 axial points and 7 center points was employed to study the effect of temperature, time, pH and enzyme-substrate ratio on Alcalase hydrolytic activity. The combined level of 55.8 °C, 259.99 min, pH 7.5 and enzyme-substrate ratio of 3.58 % (w/w) was predicted to provide the most desirable bioactivity, which produce high ACE inhibitory activity in tilapia hydrolysates. The coefficient of determination value (\mathbf{R}^2) was 0.883 for the experimental data, which indicated a satisfactory adjustment of the reduced response models. The time, temperature and enzyme-substrate ratio of the hydrolysis had significant (p < 0.01) effects on the ACE inhibitory activity in tilapia hydrolysates. The most desirable hydrolysates were fractionated using three different molecular weight cut-off membranes (10 kDa, 5 kDa and 2 kDa). Four fractions (> 10 kDa, 10-5 kDa, 5-2 kDa and < 2 kDa) obtained had the ACE inhibitory activity, however, the fraction with molecular weight of < 2kDa, appeared to have a significantly (p < 0.05) lower IC₅₀ compared to the unfractionated hydrolysate, and the other fractions.

iv

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

PENGHASILAN PEPTIDA PERENCAT ENZIM PENUKAR ANGIOTENSIN DARIPADA PROTEIN HIDROLISAT TILAPIA MERAH

Oleh

MARYAM SHAMLOO

Disember 2010

Pengerusi : Profesor Jamilah bt. Bakar, PhD

Fakulti : Sains dan Teknologi Makanan

Protein ikan dianggap sebagai nutrien yang berharga dan sumber peptida bioaktif yang baik seperti peptida perencat enzim penukar angiotensin (ACE). Laporan mengenai peptida perencat ACE daripada hidrolisat ikan air tawar sangat sedikit. Oleh sebab itu, kajian ini di jalankan dengan objektif untuk menghasilkan hidrolisat protein tilapia menggunakan proteasa homersil, iaitu Alcalase, Flavourzyme dan Protamex, mengkaji aktiviti perencat ACE, aktiviti pemeranghapan bilasan radikal bebas dan mengenalpasti jenis enzim yang dapat menghasilkan bioaktiviti tertinggi, mengoptimumkan penghasilan peptida perencat ACE berdasarkan kaedah permukaan respons (RSM), dan mengfraksinasikan peptida perencat ACE dengan menggunakan membran ultrafiltrasi. Kaedah *in vitro* digunakan untuk menentukan aktiviti perencatan ACE dan pengiraan nilai IC₅₀ (kepekatan peptida untuk mengurangkan perencat ACE sebanyak 50%). Keputusan menunjukkan bahawa Alcalase merupakan

v

enzim yang terbaik untuk menghasilkan hidrolisat tilapia dengan aktiviti perencat ACE yang tertinggi. Reka bentuk komposit memusat (CCD) yang melibatkan 16 titik kubus, 8 titik paksi dan 7 titik pusat telah digunakan untuk mengkaji kesan suhu, masa, pH dan nisbah enzim-substrat terhadap aktivitis hidrolisat Alcalase. Gabungan suhu, masa, pH dan nisbah enzim-substrat pada 55.8 °C, 259.99 minit, 7.5 dan 3.58 % (berat/berat) masing-masing telah ramalkan dapat menghasilkan aktiviti perencat ACE yang tinggi. Nilai koefisien hubung-kait yang tinggi ($R^2 = 0.883$) menunjukkan bahawa model regresi yang dihasilkan menerangkan variasi data dengan memuaskan. Masa, suhu dan nisbah enzim-substrat terhadap aktiviti hidrolysis telah menunjukkan kesan yang ketara (p < 0.01) ACE keatas aktiviti perencatan pada hidrolisat tilapia yang dihasilkan. Hidrolisat telah di ultrafiltrasi dengan menggunakan tiga jenis membrane deugan cut-off berat molekul yang berbeza (10 kDa, 5 kDa dan 2 kDa). Keempat fraksi (> 10 kDa, 10-5 kDa, 5-2 kDa dan <2 kDa) yang diperolehi telah menunjukkan aktiviti perencatan ACE, walau bagaimarapun fraksi dengan berat molekul <2 kDa nampaknya telah menunjukkan nilai IC₅₀ yang lebih rendah (p <0.05) dari fraksi yang lain.

ACKNOWLEDGEMENTS

There have been a lot of supports for the present study, of which the majority has come from professional, knowledgeable and experienced individuals from the Department of Food Science and Technology. Many people I came to know through professional contact have become true friends, which I cannot express my word enough for their valuable friendship.

Firstly, I would like to gratefully acknowledge my supervisor, Prof. Dr. Jamilah Bakar. Her leadership, friendship and consistent support have guided me through difficulties both academic and personal. She is a dear friend and a wonderful supervisor and she has taught me how to be good student,.

My sincere appreciation also goes to the other members of the Supervisory Committee: En. Dzulkifly Mat Hashim and Dr. Alfi Khatib for their invaluable guidance during this study.

I am thankful to my dear friend, Bita Forghani. Her love, friendship and support cannot be grateful enough.

Appreciation is extended to the Government of Malaysia and Universiti Putra Malaysia for granting me Graduate Research Assistantship to carry out the project.

Finally, I would like to express a special note of appreciation to my beloved husband, my dear parents and my lovely sister for their help, advice and support throughout the duration of the project.

I certify that an Examination Committee has met on 23/12/2010 to conduct the final examination of Maryam Shamloo on her Master of Science thesis entitled "Production of Angiotensin Converting Enzyme Inhibitory Peptides From Red Tilapia (*Oreochromis Niloticus*) Hydrolysates" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

TAN CHIN PING, PhD

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

ABDULKARIM SABO MOHAMMED, PhD

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Internal Examiner)

NAZAMID SAARI, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Internal Examiner)

MAMOT SAID, PhD

Associate Professor Faculty of Food Science and Technology Universiti Kebangsaan Malaysia (External Examiner)

> BUJANG KIM HUAT, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the supervisory Committee were as follows:

Jamilah bt. Bakar, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairperson)

Alfi Khatib, PhD

Faculty of Food Science and Technology Universiti Putra Malaysia (Member)

Dzulkifly Mat Hashim, M.Sc.

Faculty of Food Science and Technology Universiti Putra Malaysia (Member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for quotations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

MARYAM SHAMLOO

Date: 23 December 2010

Х

TABLE OF CONTENT

	Page
DEDICATION	ii
ABSTRACT	iii
ABSTRAK	V
ACKNOWLEDGEMENTS	vii
APPROVAL	viii
DECLARATION	Х
LIST OF TABLES	xiv
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	xvi

CHAPTER

2

	LIT	TERATURE REVIEW	5
	2.1	Definition and Application of Bioactive Peptides	5
	2.2		6
		2.2.1 Marine Sources	6
		2.2.2 Non-Marine Sources	10
	2.3	Types of bioactive peptides	12
		2.3.1 Antihypertensive Peptides	12
		2.3.2 Antioxidant Peptides	13
		2.3.3 Antimicrobial Peptides	14
		2.3.4 Antithrombotic Peptides	14
		2.3.5 Opioid Peptides	15
		2.3.6 Mineral-binding Peptides	15
		2.2.7 Immunomodultory Peptides	16
		2.2.8 Obesity Control	16
	2.4	Methods of Producing Bioactive Peptides	17
		2.4.1 The Chemical Hydrolysis Process	17
		2.4.2 Biochemical Processes	18
	2.5	Angiotensin Converting Enzyme (ACE)	26
2.6		Mechanisms and Structural Properties of Angiotensin	29
		Converting Enzyme Inhibitory Peptides	
	2.7	Isolation Methods of Protein and Peptides	33
		2.7.1 Chromatography Methods	33
		2.7.2 Non-Chromatography Methods	34

3

ENZYMATIC PRODUCTION AND CHARACTERIZATION 38 OF RED TILAPIA (*Oreochromis niloticus*) PROTEIN HYDROLYSATES

3.1 Introduction

38

xi

3.2	Materi	als and Methods	40
	3.2.1	Materials	40
	3.2.2	Production of Protein Hydrolysate	41
	3.2.3	Degree of Hydrolysis (DH)	43
	3.2.4	Kinetic of Degree of Hydrolysis	44
	3.2.5	SDS-Polyacrylamide Gel Electrophoresis(SDS-	45
		PAGE)	
	3.2.6	ACE inhibitory Activity Assay	45
	3.2.7	DPPH Radical Scavenging Ability	47
	3.2.8	Determination of Amino Acid Composition	47
	3.2.9	Statistical Analysis	49
3.3	Results and Discussion		49
	3.3.1	Enzymatic hydrolysis of Tilapia Muscle	49
	3.3.2	SDS-PAGE of Tilapia Protein Hydrolysates	52
	3.3.3	ACE Inhibitory Activity	54
	3.3.4	2,2- Diphenyl-1 picryl -hydrazyl(DPPH) Radical	56
		Scavenging Activity	
	3.3.5	Amino Acid Composition	58
3.4	Conclu	isions	62

4

OPTIMIZATION OF PRODUCTION OF ACE INHIBITORY 63 **PEPTIDES FROM ALCALASE TILAPIA HYDROLYSATE**

4.1	Introdu	uction		
4.2	Materi	Materials and Methods		
	4.2.1	Materials	65	
	4.2.2	Tilapia Hydrolysis	65	
	4.2.3	ACE Inhibitory Activity Assay	66	
	4.2.4	Degree of Hydrolysis (DH)	66	
	4.2.5	Experimental Design	66	
	4.2.6	Statistical Analysis	69	
	4.2.7	Optimization and Validation Procedures	70	
4.3	Results and Discussion		71	
	4.3.1	Effect of Hydrolysis Parameters on ACE and DH	71	
	4.3.2	Statistical Analysis	71	
	4.3.3	Reduced Response Surface Model	74	
	4.3.4	Optimization Procedure	79	
	4.3.5	Validation of the final reduced model	79	
4.4	Conclu	sions	81	

5

FRACTIONATION AND CHARACTERIZATION OF ACE82INHIBITORY PEPTIDES IN HYDROLYSATES BYULTRAFILTRATION MEMBRANE

5.1	Introduction	82
5.2	Materials and Methods	84

	5.2.1	Materials	84
	5.2.2	Tilapia Hydrolysis	84
	5.2.3	Fractionation Steps	84
	5.2.4	Degree of Hydrolysis (DH)	85
	5.2.5	Yield of Fractions	87
	5.2.6	ACE Inhibitory Activity Assay	87
	5.2.7	SDS-PAGE of Fractions	87
	5.2.8	Determination of Amino Acid Composition	88
	5.2.9	Statistical Analysis	88
5.3	Result	and Discussion	89
	5.3.1	Validation of Optimized Procedure for hydrolysis	89
	5.3.2	Yield of Fractions	91
	5.3.3	Effect of Ultrafiltration on IC ₅₀ Value	91
	5.3.4	Characterization of Tilapia Fractions Using SDS-	93
		PAGE	
	5.3.5	Effect of Ultrafiltration on Amino Acid Profile	95
5.4	Conclu	usions	97
SUN	AMARY	Y, CONCLUSIONS AND RECOMMENDATIONS	98
FOI	R FUTU	RE RESEARCH	

REFERENCES	100
APPENDICES	111
BIODATA OF STUDENT	121

6

