DEVELOPMENT OF A WATER-DISPERSIBLE PHYTOSTEROL NANODISPERSION SYSTEM AND ITS APPLICATION IN SOY MILK STORAGE

LEONG WAI FUN

FSTM 2010 17
DEVELOPMENT OF A WATER-DISPERSIBLE PHYTOSTEROL NANODISPERSION SYSTEM AND ITS APPLICATION IN SOY MILK STORAGE

By

LEONG WAI FUN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

November 2010
This work was aimed to develop a stable water-dispersible phytosterol nanodispersion system. In the first part of this work, the formation and characterization of phytosterol nanodispersions prepared using Tween 20 was investigated. The experiment demonstrated the feasibility of phytosterol nanodispersion production using hexane as organic phase through an emulsification-evaporation technique. The mean particle diameter of phytosterol nanoparticles produced was 50 nm in diameter and had a spherical shape. The dispersed phase ratio, conventional homogenization parameters and the homogenization pressure showed significant ($p < 0.05$) effects on the final phytosterol particles size and their distribution profiles. High-pressure homogenization caused significant phytosterol loss ($p < 0.05$).

Two response surface methodology (RSM) processes were applied to optimize the processing and formulation parameters for preparing phytosterol nanodispersions. The
optimized processing parameters were 15.25 min of mixing time, 7000 rpm of mixing speed and a homogenization pressure of 42.4 MPa. The corresponding responses for the optimized preparation conditions were a mean particle size (PS) of 52 nm and a phytosterol concentration (Phyto) of 336 mg/l. The optimized formulation parameters determined were a phase ratio (PR) of 3.54 and a mixture ratio (MR) of 0.19, and the corresponding optimized responses were a PS of 55.4 nm and 87.6% phytosterol concentration. The PS showed no significant ($p > 0.05$) change over a period of 8 weeks of storage at 4 ºC.

The Tween 20 was replaced by four different types of sucrose fatty acid esters (SEs), namely sucrose palmitate (P-1570), sucrose laureate (L-1695), sucrose stearate (S-1570) and sucrose oleate (OWA-1570). The physicochemical properties of SE-stabilized water-dispersible phytosterol nanodispersions were examined. The PS and the %Phyto of the prepared phytosterol nanodispersions ranged from 2.8 to 259.9 nm and from 230.4 to 504.6 mg/l. All of the prepared phytosterol nanodispersions exhibited pseudoplastic flow behavior, with a low yield stress ranging from 0.630 to 9.183 mPas and a low consistency coefficient of 0.608 to 88.710 mPas. Less than 1.5 ppm of hexane residues in the prepared nanodispersions was detected. Sucrose esters P-1570, L-1695 and S-1570 were found to be appropriate for use in preparing phytosterol nanoparticles with small PS at a monomodal distribution, with high clarity. The high phytosterol-loaded nanodispersions prepared with co-solvents ethanol and L-1695 had small spherical PS of approximately 5 nm, with low viscosity and high clarity. The solvent residue levels in the final prepared nanodispersions were acceptable.
L-1695 was selected for further optimization of the production of L-1695-stabilized water-dispersible phytosterol nanodispersions through RSM. The optimized parameters were 5.5% of Ph (phytosterol concentration), 1.0% of L (L-1695 concentration), 3 C (homogenization cycle), and P(homogenization pressure) of 37 MPa. The corresponding responses for the optimized condition were a PS of 3 nm and a %Ph of 90.4%. The optimized phytosterol nanodispersions had a polydispersity index of 0.550 at a monomodal distribution. The pH value and hexane and ethanol residues concentration were 6.45, 48.2 μl/l and 930.3 μl/l, respectively. The optimized nanodispersions were stable to heat treatment up to 121 °C, chilling at 4 and 10 °C and freezing with a cryoprotectant at –4 and –20 °C.

The stability of the optimized phytosterol nanodispersions and phytosterol-fortified soy milk (SMP) over a 12-week period was investigated. The storage resulted in increases in PS and reduced the total phytosterol concentration of the autoclaved phytosterol nanodispersions. Adding phytosterol nanodispersions increased the mean particle size of the soy milk. The fortified phytosterol nanoparticles became entrapped in the fat droplets of the soy milk. The stability of the SMP depended on the stability of the soy milk. The fortification of phytosterol nanodispersions in soy milk was feasible.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PEMBANGUNAN NANOSERAKAN FITOSTEROL TERSERAK DALAM AIR DAN APLIKASINYA DALAM PENYIMPANAN SUSU SOYA

Oleh

LEONG WAI FUN

November 2010

Pengerusi: Profesor Madya Tan Chin Ping , PhD

Fakulti: Sains dan Teknologi Makanan

Kajian ini bertujuan untuk membangunkan nanoserakan fitosterol terserak dalam air untuk penggunaan makanan. Bahagian pertama kajian ini melibatkan kajian permulaan untuk menyiasat pembentukan dan perwatakan nanoserakan fitosterol yang disediakan dengan menggunakan Tween 20 sebagai agen pengemulsi. Eksperimen menunjukan kemungkinan penghasilan nanoserakan fitosterol dengan menggunakan pelarut organik heksana melalui kaedah pengemulsian-penyejatan. Diameter purata partikel nanoserakan yang dihasilkan berukuran 50 nm dan berbentuk sfera. Nisbah fasa serakan, parameter penghomogenan biasa dan tekanan penghomogenan menunjukkan kesan ketara \(p < 0.05 \) ke atas saiz dan pengagihan partikel fitosterol. Selain itu, penghomogenan bertekanan-tinggi menyebabkan kehilangan fitosterol yang ketara \(p < 0.05 \).

Due kaedah permukaan gerak balas (RSM) telah digunakan untuk pengoptimuman parameter pemprosesan dan formulasi bagi penyediaan nanoserakan fitosterol.
Parameter pemprosesan yang optimum ialah 15.25 min masa pengaulan, 7000 rpm halaju pengacauran and tekanan penghomogenan ialah 42.4 MPa. Parameter-parameter pemprosean pada keadaan optimum tersebut menghasilkan saiz purata partikel (PS) bernilai 52 nm and kepekatan fitosterol (Phyto) bernilai 336 mg/l. Parameter formulasi yang optimum ialah nisbah serakan (PR) bernilai 3.54 and nisbah campuran (MR) bernilai 0.19. Formulasi optimum ini telah menghasilkan PS bernilai 55.4 nm dan 87.6% kepekatan fitosterol. Tiada perbezaan ketara ($p < 0.05$) pada PS selama 8 minggu penyimpanan pada suhu 4°C.

Seterusnya, Tween 20 telah digantikan dengan ester sukrosa (SEs) iaitu palmitat sukrosa (P-1570), lauriat sukrosa (L-1695), stearat sukrosa (S-1570) dan oliat sukrosa (OWA-1570). Kajian ke atas sifat fisikokimia nanoserakan fitosterol yang disediakan dengan SEs telah dijalankan. PS dan %fitosterol dalam nanoserakan fitosterol yang dihasilkan adalah berukuran 2.8 hingga 259.9 nm dan 230.4 hingga 504.6 mg/l masing-masing. Semua nanoserakan fitosterol yang disediakan menunjukan sifat pengaliran pseudoplastik dengan hasil stress yang rendah bernilai 0.630 hingga 9.183 mPa and nilai ketekalan yang rendah di antara 0.608 hingga 88.710 mPas. Kurang daripada 1.5 ppm sisa heksana telah dikesan dalam nanoserakan yang telah disediakan. Ester sukrosa P-1570, L-1695 dan S-1570 didapat bersesuaian untuk digunakan dalam penyediaan nanoserakan fitosterol dengan PS yang kecil, corak serakan monomodel dan kejernihan yang tinggi. Nanoserakan fitosterol dengan kepekatan fitosterol yang tinggi telah disediakan dengan sepelarut etanol and L-1695 dan menghasilkan PS yang kecil dan sfera pada ukuran kira-kira 5 nm, kekentalan yang rendah dan kejernihan yang tinggi.
Kepekatan sisa pelarut pada nanoserakan fitosterol akhir adalah pada tahap yang munasabah.

L-1695 telah dipilih untuk kajian pengoptimuman bagi menghasilkan nanoserakan fitosterol terserak dalam air melalui RSM. Parameter optimum ialah 5.5\% Ph (kepekatan fitosterol), 1.0\% L(kepekatan L-1695), 3C (pusingan penghomogenan) dan 37 MPa P (tekanan penghomogenan). Parameter optimum ini telah menghasilkan PS berukuran 3 nm and \%Ph bernilai 90.4\%, Nanoserakan fitosterol yang dioptimumkan mengandungi indek poly-serakan berukuran 0.550 pada corak serakan monomodel. Nilai pH, kepekatan sisa heksana dan etanol, ialah 6.45, 48.2 μl/l dan 930.3 μl/l masing-masing. Nanoserakan fitosterol yang dioptimumkan adalah stabil terhadap rawatan pemanasan sehingga suhu 121°C, penyejukan pada 4 dan 10°C, dan pembekuan dengan cryoprotectant pada – 4 dan – 20°C.

ACKNOWLEDGEMENTS

I wish to express a huge amount of gratitude to Assoc. Prof. Dr. Tan Chin Ping, my primary supervisor, for his support, guidance and encouragement throughout this study. I am extremely grateful for the effort he continues to spend on my research, manuscripts and thesis. Special thanks should go to my cosupervisors, Prof. Yaakob Che Man, Assoc. Prof. Dr. Lai Oi Ming and Dr. Kamariah Long, for their constant support and encouragement.

I cannot thank the Graduate School of Universiti Putra Malaysia enough for the Graduate Research Fellowship, which permitted me to concentrate on my studies without financial worries. I would also like thank Assoc. Prof. Dr. Misni Misran and Ms. Tan Hsiao Wei of the Colloid Research Group of Department of Chemistry, University Malaya, for providing the analytical instruments and technical support for particle sizing and zeta-potential analysis. A sincere gratitude is also extended to Mrs. Aminah Jusoh of Unit Microscopy, Institute BioScience, Universiti Putra Malaysia, for helping with the TEM analysis.

I cannot forget to thank all my laboratory mates for their concern and assistance throughout my study. Many thanks are also due to the faculty members, staff and technicians for their invaluable assistance and support. Finally, I would like to express my appreciation to my family, my parents, my siblings and all my friends for their unconditional love and encouragement.
I certify that a Thesis Examination Committee has met on 23 November 2010 to conduct the final examination of Leong Wai Fun on her thesis entitle “Development of water-dispersible phytosterol nanodispersion system and its application in soy milk ” is accordance with Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Examination Committee were as follows:

Sharifah Kharidah Syed Muhammad
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Hasanah Mohd. Ghazali
Dean
School of Graduate Studies
University Putra Malaysia
(Internal Examiner)

Mohammad Reza Mozafari
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Qingrong Huang
Lecturer
School of Environmental and Biological Sciences
The State University of New Jersey
(External Examiner)

BUJANG BIN KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Tan Chin Ping, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Yaakob Bin Che Man, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Lai Oi Ming
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Kamariah Long, PhD
Deputy Director
Bio-processing Units,
Biotechnology Research Centre
Malaysian Agricultural Research and Development Institute (MARDI)
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

LEONG WAI FUN

Date: 23 November 2010
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>48</td>
</tr>
</tbody>
</table>

CHAPTER 1: GENERAL INTRODUCTION

LITERATURE REVIEW

- Introduction of phytosterols
 - Phytosterols and health
 - Phytosterols in foods
 - Safety of phytosterols
- Emulsion
 - Nanodispersion
 - Formation of nanodispersions
 - Preparation of nanodispersions
 - Application, bioavailability and safety of nanodispersions
- Emulsifiers
 - Hydrophile-lipophile Balance (HLB)
 - Sucrose fatty acid esters
- Stability of nanodispersions
 - Creaming or sedimentation
 - Coalescence
 - Flocculation
 - Ostwald ripening
- Characterization of nanodispersions
 - Particle size and particle-size distribution
 - Morphology of the particles
 - Rheological properties
 - Appearance

CHAPTER 2: PREPARATION, CHARACTERIZATION AND OPTIMIZATION OF PHYTOSTEROL NANOdispersions STABILIZED BY TWEEN 20

Introduction

Materials and Methods

- Materials
Methods

Part 1: Preparation and characterization of Tween 20 stabilized phytosterol nanodispersions
Solubility of phytosterols in organic solvents
Preparation of phytosterol nanodispersions
Analysis of particle size and its polydispersity
Gas Chromatography analysis of phytosterols content
Sample preparation
Preparation of standards and internal standards
Gas chromatography analysis of phytosterol
Calculation of phytosterol content
Transmission electro microscopy (TEM)
Statistical analysis

Part 2: Optimization of processing parameters
Experimental design
Preparation of phytosterol nanodispersions
Statistical analysis
Optimization and verification

Part 3: Optimization of formulation parameters
Experimental design
Preparation of phytosterol nanodispersions
Optimization and verification

Results and Discussion

Part 1: Preparation and characterization of Tween 20 stabilized phytosterol nanodispersions
Solubility of phytosterol
Effect of organic phase types on the physicochemical properties of phytosterol nanodispersions
Effect of phase ratio on the particle size of phytosterol nanodispersions
Effect of conventional homogenization parameters on the physicochemical properties of the phytosterol nanodispersions
Effect of high-pressure homogenization parameters on the physicochemical properties of the phytosterol nanodispersions
TEM analysis
Summary

Part 2: Optimization of processing parameters
General
Fitting the model
The main and the interaction effects of the independent variables
Optimization of processing parameters for the production of phytosterol nanodispersions
Model verification
4 EFFECT OF SUCROSE FATTY ACIDS ESTERS ON WATER-DISPERSIBLE PHYTOSTEROL NANODISPERSIONS

Introduction 103

Materials and methods
Materials 105
Methods
Solubility of phytosterols in organic solvent 106
Preparation of phytosterol nanodispersions 107
Analysis 108
Determination of solvent residual 108
HS-SPME- analysis 108
Gas chromatography analysis of organic solvent residue 109
Viscosity measurement 110
Transmittance measurement 110
Statistical analysis 110

Result and Discussion
Part 1: Effect of P-1570, L-1695, S-1570 and OWA-1570 on particle characteristic and flow properties of phytosterols nanodispersions
Particle size and its distribution 112
Retention of phytosterol 115
Hexane residue 117
Flow property 118
Transmittance spectrum 121
TEM analysis 124

Part 2: Effect of phytosterol concentration on P-1570 and L-1695 stabilized phytosterols nanodispersions
Solubility of phytosterols in the mixture organic phase 125
Particle size and distribution profile, and the phytosterols retention. 126
Solvent residue 131
Flow property 134
Transmittance spectrum 136

Part 3: preparation and characterization of L-1695 stabilized phytosterol
nanodispersions
Effect of phase ratio 138
Effect of high pressure homogenization parameters 139
Effect of conventional homogenization parameters 141

Summary 143

5 OPTIMIZATION OF SUCROSE LAUREATE-STABILIZED WATER-DISPERSIBLE PHYTOSTEROL NANODISPERSIONS
Introduction 145
Materials and methods
Materials 147
Methods 148
Experimental design 148
Preparation of phytosterol nanodispersions 149
Analysis 150
Zeta potential measurement 151
pH measurement 151
Effect of temperature on particle size and distribution 151
Statistical analysis 152
Optimization and verification 152
Result and Discussion
Model fitting 153
The main effects and the interaction effects of the independent variables 156
Optimization of production of phytosterol nanodispersions 160
Model verification 162
Characteristic of the prepared optimized phytosterol nanodispersions 163
Effect of thermal treatment on the optimized phytosterol nanodispersion 164
Summary 169

6 STORAGE STABILITY EVALUATION OF THE OPTIMIZED SUCROSE LAUREATE-STABILIZED PHYTOSTEROL NANODISPERSIONS AND ITS APPLICATION IN SOY MILK
Introduction 172
Materials and methods
Materials 174
Methods 175
Preparation of phytosterol nanodispersions 175
Preparation of soymilk 175
Formulation and packaging 176
Analysis 177
Particle size growth ratio 177
Cloudiness measurement 177
Statistical analysis 178
Result and discussion
 Particle size and distribution 179
 Solvent residue 189
 Phytosterol concentration 191
 Cloudiness 192
 Flow properties 194
Summary 199

7 CONCLUSION AND RECOMMENDATIONS 200

BIBLIOGRAPHY 206
APPENDICES 225
BIODATA OF STUDENT 230
LIST OF PUBLICATION 231
LIST OF PAPERS PRESENTED AT TECHNICAL MEETINGS 232