

UNIVERSITI PUTRA MALAYSIA

SYNTHESIS, CHARACTERIZATION AND BIOACTIVITY OF NEW PHOSPHOROUS CONTAINING SCHIFF BASES PREPARED FROM DITHIOCARBAZATE DERIVATIVES AND THEIR METAL COMPLEXES

ISAM HUSSAIN T. AL-KARKHI

FS 2011 3

SYNTHESIS, CHARACTERIZATION AND BIOACTIVITY OF NEW PHOSPHOROUS CONTAINING SCHIFF BASES PREPARED FROM DITHIOCARBAZATE DERIVATIVES AND THEIR METAL COMPLEXES

ISAM HUSSAIN T. AL-KARKHI

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

January 2011

SYNTHESIS, CHARACTERIZATION AND BIOACTIVITY OF NEW PHOSPHOROUS CONTAINING SCHIFF BASES PREPARED FROM DITHIOCARBAZATE DERIVATIVES AND THEIR METAL COMPLEXES

By

ISAM HUSSAIN T. AL-KARKHI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

January 2011

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctorate of Philosophy

SYNTHESIS, CHARACTERIZATION AND BIOACTIVITY OF NEW PHOSPHOROUS CONTAINING SCHIFF BASES PREPARED FROM DITHIOCARBAZATE DERIVATIVES AND THEIR METAL COMPLEXES

By

ISAM HUSSAIN T. AL-KARKHI

January 2011

Chairman: Dr. Mohamed Ibrahim Mohamed Tahir (D. Phil.)

Faculty: Science

Twelve novel phosphorous containing Schiff bases derived from the four isomeric dithiocarbazates which are methyl hydrazinecrabodithioate (SMDTC), phenyl hydrazinecarbodithioate (SBDTC), 2-methylbenzyl hydrazinecarbodithioate (S2MBDTC) and 4-methylbenzyl hydrazinecarbodithioate (S4MBDTC) with 2-(diphenylphosphino) benzaldehyde (DPPB), (triphenylphosphanylidene) acetaldehyde (TPPA) and (triphenylphosphanylidene)propan-2-one (TPPP). Metal complexes of Cd(II), Co(III), Cu(II), Ni(II) and Zn(II) were synthesized from these twelve Schiff bases to obtain sixty metal complexes. All these novel compounds have been successfully synthesized and characterized by various physico-chemical and spectroscopic techniques. The structures of nine Schiff bases and two transition metal complexes were successfully determined *via* X-ray crystallographic analysis.

Four novel Schiff bases were coordinated in their metal complexes through nitrogen, sulfur and phosphorous donor atoms (PNS tridentate ligands), while the other eight Schiff bases coordinated through nitrogen and sulfur donor atoms (NS bidentate ligands). The cobalt complexes Co(SMDPB)₂ NO₃. 3H₂O had distorted octahedral geometry, coordinating *via* the triphenylphosphine phosphorous, azomethine nitrogen and thiolate sulphur atoms of the Schiff bases. The nickel complex has square planar geometry and coordinated *via* azomethine nitrogen and thiolate sulphur atoms of the Schiff base, while the λ^5 phosphorous do not coordinate.

All the seventy two novel compounds have been evaluated for their biological activities against certain pathogenic microbial and two breast cancer cell lines, MCF-7 (human breast carcinoma cells with positive estrogen receptor) and MDA-MB231 (human breast carcinoma cells with negative estrogen receptor). The complexes were mostly antibacterial, but were less active against the fungal strains tested. The Schiff bases in this study show a weak activity except for S2MBDTPA which shows a moderate activity. Complexation of these Schiff bases with the transition metal ions will enhance and increased the activity significantly. It was also found that the complexes contain λ^5 P shows more activity than λ^3 P. The complexes were generally more active against the MCF-7 cell line as compared to the MDA-MB231 cell line. Most of the metal complexes exhibited higher bioactivity compared to their ligands in the complexes.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doctor Falsafah.

SINTESIS, PENCIRIAN DAN AKTIVITI BIOLOGI BES SCHIFF BARU MENGANDUNGI FOSFORUS YANG DISEDIAKAN DARIPADA TERBITAN DITHIOKARBAZAT DAN KOMPLEKS-KOMPLEKS LOGAMNYA

Oleh

ISAM HUSSAIN T. AL-KARKHI

January 2011

Pengerusi: Dr. Mohamed Ibrahim Mohamed Tahir (D. Phil.)

Fakulti: Sains

Dua belas bes Schiff novel yeng mengandungi fosforus den gebungen emapt isomerik ditiokarbazat iaitu metilhidrazinkarboditioat (SMDTC), fenilhidrazinkarboditioat (SBDTC), 2-metilbenzilhidrazinkarboditoat (S2MBDTC) dan 4- metilbenzilhidrazinkarboditioat (S4MBDTC) dengan 2-(difenilfosfino)benzaldehid(DPPB), (trifenilfosfanilidin)asetaldehid (TPPA) dan (trifenilfosfanilidin)propan-2-on (TPPP). Kompleks logam Cd(II), Co(II), Cu(II), Ni(II) dan Zn(II) telah disintesis daripada duabelas bes Schiff tersebut untuk mendapatkan enam pulah kompleks logam, kesemua sebatian novel telah berjaya disintesis dan dicirikan dengan pelbagai teknik-teknik fisiko-kimia dan spektroskopi. Struktur sembilan bes Schiff dan dua kompleks logam peralihan telah berjaya ditentukn melalui analisis kristalografi sinar-X.

Empat bes Schiff novel terkoordinat didalam kompleks logam mereka melalui atom penderma nitrogen, sulfur dan fosforus (ligan tridentat PNS), sementara lapan bes Schiff yang lair berkoordinat melalui atom perderma nitrogen dan sulfur (ligan bidentat NS). Kompleks kobalt Co(SMDPB)₂ NO₃. 3H₂O mempunyai geometri oktahedron terherot, dikoordinat melalui atom fosforus trifenilfosfin, nitrogen azometin dan sulfur tiolat pada bes Schiff. Kompleks nikel mempunyai geometri satah segiempat sama dan berkoordinat melalui atom nitrogen azometin dan sulfur tiolat pada bes Schiff, sementara fosforus λ^5 tidak terkoordinat.

Kesemua tujuh puluh dua sebatian novel tersebut telah dinilai untuk aktiviti biologi terhadap beberapa mikrob patogen dan dua titisan sel kanser payudara MCF-7 (sel karsinoma payudara manusia dengan penerima estrogen positif) dan MDA-MB231 (sel karsinoma payudara penerima estrogen negatif). Kebanyakan kompleks antibakteria tetapi kurang aktif terhadap strain kulat yang diuji. Bes Schiff dalam kajian ini menunjukkan aktiviti yang lemah kecuali S2MBDTPA dmana menunjukkan aktiviti yang moderat. Pengkompleksan bes Schiff ini dengan ion logam peralihan akan meningkatkan aktiviti dengan signifikan lebih dan. Kompleks mengandugi λ^5 P menunjukkan aktiviti yang teloh can λ^3 P. Kompleks secara umumnya lebih aktif terhadap titisan sel MCF-7 jiba dibandingkan dengan titisan sel MDA-MB231. Kebanyakkan kompleks logam menunjukkan bioaktiviti yang lebih tinggi berbanding dengan ligan didalamnya.

ACKNOWLEDGEMENTS

In the name of Allah, the most Beneficent, the most Merciful Praise is to Allah who gave me the power, the strength, the motivation, help and the patience to complete this study after so many hurdles and obstacles; and blessings and peace be upon our prophet Muhammad (S.A.A.W).

I am indebted to many people for the successful completion of my dissertation. First and foremost, I would like to sincerely thank my supervisor, Dr. Mohamed Ibrahim Mohamed Tahir, for his patience, advice, guidance, and encouragement toward the completion of this thesis. I would also like to thank Prof. Dr. Karen A. Crouse for her advice, encouragement and guidance.

I am also grateful to Dr. Rozita Rosli for allowing me to use their lab facilities and for always being available for discussion. I am also indebted to all the laboratory technicians and staff in the Faculty of Science, Faculty of Medicine and Health Science and the Institute of Bioscience for helping me to run my various analyses using different instruments. As always, I thank my dear labmates: Thahira, Fiona, Fatah, Tan, Shatila, Georgiana and Hiba. We have had a lot of sweet memories together, both inside and outside the lab.

I'd like to thank three extremely special people in my life, I wish to express my appreciation, gratefulness and my thanks to my wife, Maha for being so patient with me, for listening and bearing all the difficulties, and for being with me always, also I would like to thank the lights of my life, my darling daughter Dalia

and my son Ibrahim who represents my continuity in the future and all my brothers and sisters. Also special thanks to Wisam Awad, my brother in law, thank you all.

Special thanks to my dearst friend Hussain Kadium Rasheed, who was always with me, may God Bless you Abo Ali.

Scincer thanks to Dr. Khalil Al-Dolaimi, Dr. Abbas Sabri, Dr. Hussain Ismael Mr. Emad A. Jaffar Almula and Mr. Hameed Ali Hussain for supporting me, may God give you all happiness and prosperity.

Last but not least I would like to thank all those whose names are not mentioned due to space but they are in my heart.

I certify that an Examination Committee met on date of viva to conduct the final examination of Isam Hussain T. Al-Karkhi on his Doctor of Philosophy thesis entitled "Synthesis, Characterization and Bioactivity of New Phosphorous Containing Schiff Bases Prepared from Dithiocarbazate Derivatives and Their Transition Metal Complexes" in accordance with Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Examination Committee were as follows:

Nor Azah Yusof, PhD Associate Professor Faculty of Science Universiti Putra Malaysia (Chairperson)

Sidik Silong, PhD Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Abdul Halim Abdullah, PhD Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Ali Morsali, PhD Associate Professor Tarbiat Modares University Iran (External Examiner)

> SHAMSUDDIN SULAIMAN, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 11 April 2011

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mohamed Ibrahim Mohamed Tahir, D. Phil., PhD

Senior Lecturer Faculty of Science Universiti Putra Malaysia (Chairman)

Karen Anne Crouse, PhD

Professor Faculty of Science Universiti Putra Malaysia (Member)

Rozita Rosli, PhD

Assoc. Prof. Faculty of Medical and Health Science Universiti Putra Malaysia (Member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies University Putra Malaysia

Date: 24 March 2011

DECLARATION

I declare that the thesis is my original work except for the quotations and citations, which have been duly acknowledged. I also declare that this it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

ISAM HUSSAIN T. AL-KARKHI

Date: 19 January 2011

LIST OF TABLES

Tabl	le	Page
2.1	Substrates used for the synthesis of various iminophosphine ligands.	36
2.2	FT-IR for ligands $HL^1 - HL^2$ and its acetate palladium(II) complexes	40
2.3	Antimigratory activity of NSC 295642 and its analogs	50
3.1	Preparation of Schiff bases derived from DPPB and their abbreviations	57
3.2	Preparation of Schiff bases derived from TPPA and their abbreviations	58
3.3	Preparation of Schiff bases derived from TPPP and their abbreviations	59
4.1	Analytical data and physical properties of the Schiff Bases and their metal complexes.	73
4.2	Infrared data of the Schiff bases and metal complexes	81
4.3	¹ H NMR Data of SMDTPB, SBDTPB, S2MBDTPB, S4MBDTPB, SMDTPA, SBDTPA, S2MBDTPA, S4MBDTPA, SMDTPP, SBDTPP, S2MBDTPP, S4MBDTPP Schiff bases	88
4.4	¹³ C NMR Data of SMDTPB, SBDTPB, S2MBDTPB, S4MBDTPB, SMDTPA, SBDTPA, S2MBDTPA, S4MBDTPA, SMDTPP, SBDTPP, S2MBDTPP, S4MBDTPP Schiff bases	89
4.5	Suggested fragmentation for SMDPB, SBDPB, S2MBDPB & S4MBDPB	92
4.6	Suggested fragmentation for SMDTPA, SBDTPA, S2MBDTPA & S4MBDTPA	95
4.7	Suggested fragmentation for SMDTPP, SBDTPP, S2MBDTPP & S4MBDTPP	99
4.8	Magnetic susceptibility and molar conductivity measurements of the metal complexes.	105

4.9	Electronic Spectral Data for the Schiff Bases and Their Transition Metal Complexes	114
4.10	Different bond angles and bond lengths of the nine Schiff bases	119
4.11	Selected Bond Lengths (Å) and Bond Angles (°) for SMDPB	122
4.12	Selected Bond Lengths (Å) and Bond Angles (°) for SMDTPA	123
4.13	Selected Bond Lengths (Å) and Bond Angles (°) for SMDTPP	124
4.14	Selected Bond Lengths (Å) and Bond Angles (°) for SBDPB	125
4.15	Selected Bond Lengths (Å) and Bond Angles (°) for SBDTPA	126
4.16	Selected Bond Lengths (Å) and Bond Angles (°) for SBDTPP	127
4.17	Selected Bond Lengths (Å) and Bond Angles (°) for S2MBDPB	128
4.18	Selected Bond Lengths (Å) and Bond Angles (°) for S2MBDTPA	129
4.19	Selected Bond Lengths (Å) and Bond Angles (°) for S4MBDPB	130
4.20	Selected Bond Lengths (Å) and Bond Angles (°) for Co (SMDPB) ₂ NO ₃ .H ₂ O Metal Complex	134
4.21	Selected Bond Lengths (Å) and Bond Angles for Ni (S2MBDTPA) ₂ Metal Complex	135
4.22	Qualitative Antimicrobial and Antifungal screening result of the Schiff bases and their Transition Metal Complexes	144
4.23	Quantitative Antimicrobial Analysis of the Schiff bases and their Transition Metal Complexes screening results –MIC.	147

4.24 Cytotoxic Data of the Isomeric Dithiocarbazates, their Schiff bases 156 and their Transition Metal complexes.

LIST OF FIGURES

Figu	re	Page
1.1	Some of common phosphorous compounds.	2
1.2	General structure of dithiocarbazate	3
1.3	Reaction pathway for the synthesis of potassium dithiocarbazate	3
1.4	Different Dithiocarbazate used in this study	4
1.5	Cone angle of phosphine-ligand	7
1.6	Different cone angle	8
1.7	Some of phosphine ligands.	8
1.8	The four TQMP4 cadmium complexes	10
2.1	Hemoglobin	21
2.2	A- Structure of Cisplatin and Carboplatin.	22
	B- Auranofin and Myocrisin.	
	C- Satraplatin, Picoplatin and Iproplatin.	
2.3	The [Rh(Bipy) ₂ Chrisy] ⁺³ metalloinercalaor	23
2.4	Compounds that stop the synthesis of DNA.	29
2.5:	Some compounds that cause damage to the DNA.	30
2.6	Compounds causes' breakdown of the mitotic spindles.	31

2.7	Mechanism of acid-catalyzed imine formation	35
2.8	Synthesis of iminophosphine	36
2.9	General reduction and alkylation of iminophosphine ligands	37
2.10	Series of iminophosphine could be synthesized	38
2.11	Schiff base Tautomerism	39
2.12	2-(diphenylphosphino)benzaldehyde selenosemicarbazone	39
2.13	Schematic presentation of ligand and acetate palladium(II) complex	40
2.14	New iminophosphine ligands & metal complexes	41
2.15	Structure of P, S- heterodonor ligand (L1) and $Pd(L1)Cl_2$ complex	42
2.16	The Schiff base of 2-diphenylphosphino) benzaldehydethio semicarbazone (PNS) and the palladium(II) complex	43
2.17	PNNS ligand and rhenium(V) complex	44
2.18	ORTEP diagram of rhenium(V) complex.	45
2.19	ORTEP diagram of [SnEt ₂ (PyTSC)(S ₂ PPh ₂)]	46
2.20	Bioactive gold(I) phosphine complexes.	47
2.21	Synthesis of phosphunt-thioate-gold complex.	47
2.22	Structure of NSC 295642. (L ₁), L ₂ & L ₃	48
2.23	Metal(II)-ligand complexes tested for antimigratory activity.	49
2.24	Palladium (II) complexes bearing 1,2-bis(diphenylphosphino)	51
ethar	ne (dppe) (19 and 20).	

2.25: Iminophoshine-Au anticancer.	52
4.1 Structure of the isomeric dithiocarbazates	68
4.2: Structure of the different ketones and aldehydes used	68
4.3: Synthesis equations of the novel Schiff bases	69
4.4: Thione-Thiol tautomerism in Schiff bases	70
4.5: Expected structures of the transition metal complexes	70
4.6: General structure of 2,4-thiadiazoles formed during synthesis (Dotted lines indicate varying positions of the methyl group).	71
4.7: Coordination Sites of the Schiff Bases	79
4.8: Fragmentation of DPPB series	91
4.9: Fragmentation of TPPA series	94
4.10: Fragmentation of TPPP series	98
4.11 Packing arrangement triclinic Schiff bases (Hydrogen bonds have been removed for clarity)	117
4.12: Packing arrangement of monoclinic Schiff bases (Hydrogen bonds have been removed for clarity)	118
4.13 Structure of the Schiff base derived from 2-quinoline carboxaldehyde and S-methyldithiocarbazate	120
4.14: Crystal structure confirmation of the Schiff base	121
4.15 ORTEP Diagram of the SMDPB Schiff base.	122
4.16 ORTEP Diagram of the SMDTPA Schiff base	123

4.17	ORTEP Diagram of the SMDTPP Schiff base	124
4.18	ORTEP Diagram of the SBDPB Schiff base	125
4.19	ORTEP Diagram of the SBDTPA Schiff base	126
4.20	ORTEP Diagram of the SBDTPP Schiff base	127
4.21	ORTEP Diagram of the S2MBDPB Schiff base	128
4.22	ORTEP Diagram of the S2MBDTPA Schiff base	129
4.23	ORTEP Diagram of the S4MBDPB Schiff base	130
4.24:	Packing arrangement of Co(SMDPB) ₂ .NO ₃ .3H ₂ O (Along axis-c)	131
4.25	: Packing arrangement of Ni(S2MBDTPA) ₂ (Along axis-c)	133
4.26	ORTEP Diagram of the Co(SMDPB) ₂ NO ₃ .H ₂ O Metal Complex	134
4.27	ORTEP Diagram of Ni(S2MBDTPA) ₂ Metal Complex	135
4.28	Structure of salicylaldehyde and the aminobenzylamine	141
4.29	Cinnamaldehyde	142
4.30	Schiff bases of S2- & S4-methylbenzyl dithiocarbazate (methyl groups <i>ortho</i> and <i>para</i> respectively).	143
4.31	o-phenhydramine, p-phenhydramine and S2MBDTC, SMDTC	149
4.32	Pyridine -2- carboxaldehyde, 2- acetylpyridine, TPP & TPA	150
4.33	Thiophene & Pyridine compounds	151

4.34:	Comparing activity of SMDTC series against MCF-7 & MDA-MB231	153
4.35:	Comparing activity of SBDTC series against MCF-7 & MDA-MB231	153
4.36:	Comparing activity of S2MBDTC series against MCF-7 & MDA-MB231	154
4.37:	Comparing activity of S4MBDTC series against MCF-7 & MDA-MB231	154

LIST OF FIGURES AND TABLES IN APPENDICES

Figure/Table	Page
Figure A1: IR spectra comparison of SMDTC, DPPB and SMDPB	186
Figure A2: IR spectrum of SMDPB	186
Figure A3: IR spectra comparison of SMDPB and Cd(SMDPB) ₂	187
Figure A4: IR spectra comparison of SMDPB and Co(SMDPB) ₂ .NO ₃ .3H ₂ C) 187
Figure A5: IR spectra comparison of SMDPB and Cu(SMDPB) ₂	188
Figure A6: IR c SMDPB and Ni(SMDPB) ₂	188
Figure A7: IR spectra comparison of SMDPB and Zn(SMDPB) ₂	189
Figure A8: IR spectrum of SBDTPB	189
Figure A9: IR spectrum of Cd(SBDTPB) ₂	190
Figure A10: IR spectrum of Co(SBDTPB) ₂ .NO ₃	190
Figure A11: IR spectrum of Cu(SBDTPB) ₂	191
Figure A12: IR spectrum of Ni(SBDTPB) ₂	191
Figure A13: IR spectrum of Zn(SBDTPB) ₂	192
Figure A14: IR spectrum of S2MBDTPB	192
Figure A15: IR spectrum of Cd(S2MBDTPB) ₂	193
Figure A16: IR spectrum of Co(S2MBDTPB) ₂	193

Figure A17: IR spectrum of Cu(S2MBDTPB) ₂	194
Figure A18: IR spectrum of Ni(S2MBDTPB) ₂	194
Figure A19: IR spectrum of Zn(S2MBDTPB) ₂	195
Figure A20: IR spectrum of S4MBDTPB	195
Figure A21: IR spectrum of Cd(S4MBDTPB) ₂	196
Figure A22: IR spectrum of Co(S4MBDTPB) ₂ .NO ₃	196
Figure A23: IR spectrum of Cu(S4MBDTPB) ₂	197
Figure A24: IR spectrum of Ni(S4MBDTPB) ₂	197
Figure A25: IR spectrum of Zn(S4MBDTPB) ₂	198
Figure A26: IR spectra comparison of SMDTPA and TPPA	198
Figure A27: IR spectrum of SMDTPA	199
Figure A28: IR spectrum of Cd(SMDTPA) ₂	199
Figure A29: IR spectrum of Co(SMDTPA) ₂ .NO ₃	200
Figure A30: IR spectrum of Cu(SMDTPA) ₂	200
Figure A31: IR spectrum of Ni(SMDTPA) ₂	201
Figure A32: IR spectrum of Zn(SMDTPA) ₂	201
Figure A33: IR spectra comparison of SBDTPA and TPPA	202
Figure A34: IR spectrum of SBDTPA	202
Figure A35: IR spectra comparison of SBDTPA and Cd(SBDTPA) ₂	203

Figure A36: IR spectra comparison of SBDTPA and $Co(SBDTPA)_2$.NO ₃	203
Figure A37: IR spectra comparison of SBDTPA and Cu(SBDTPA) ₂	204
Figure A38: IR spectra comparison of SBDTPA and Ni(SBDTPA) ₂	204
Figure A39: IR spectra comparison of SBDTPA and Zn(SBDTPA) ₂	205
Figure A40: IR spectra comparison of S2MBDTPA and S2MBDTC	205
Figure A41: IR spectrum of S2MBDTPA	206
Figure A42: IR spectrum of Cd(S2MBDTPA) ₂	206
Figure A43: IR spectrum of Co(S2MBDTPA) ₂ .NO ₃	207
Figure A44: IR spectrum of Cu(S2MBDTPA) ₂	207
Figure A45: IR spectrum of Ni(S2MBDTPA) ₂	208
Figure A46: IR spectrum of Zn(S2MBDTPA) ₂	208
Figure A47: IR spectra comparison of S4MBDTC and S4MBDTPA	209
Figure A48: IR spectrum of S4MBDTPA	209
Figure A49: IR spectrum of Cd(S4MBDTPA) ₂	210
Figure A50: IR spectrum of Co(S4MBDTPA) ₂ .NO ₃	210
Figure A51: IR spectrum of Cu(S4MBDTPA) ₂	211
Figure A52: IR spectrum of Ni(S4MBDTPA) ₂	211
Figure A53: IR spectrum of Zn(S4MBDTPA) ₂	212
Figure A54: IR spectra comparison of SMDTPP and TPPP	212

Figure A55: IR spectrum of SMDTPP	213
Figure A56: IR spectrum of Cd(SMDTPP) ₂	213
Figure A57: IR spectrum of Co(SMDTPP) ₂ .NO ₃	214
Figure A58: IR spectrum of Cu(SMDTPP) ₂	214
Figure A59: IR spectrum of Ni(SMDTPP) ₂	215
Figure A60: IR spectrum of Zn(SMDTPP) ₂	215
Figure A61: IR spectra comparison of SBDTPP and TPPP	216
Figure A62: IR spectrum of SBDTPP	216
Figure A63: IR spectrum of Cd(SBDTPP) ₂	217
Figure A64: IR spectrum of Co(SBDTPP) ₂ .NO ₃	217
Figure A65: IR spectrum of Cu(SBDTPP) ₂	218
Figure A66: IR spectrum of Ni(SBDTPP) ₂	218
Figure A67: IR spectrum of Zn(SBDTPP) ₂	219
Figure A68: IR spectra comparison of S2MBDTPP and S2MBDTC	219
Figure A69: IR spectrum to S2MBDTPP	220
Figure A70: IR spectrum of Cd(S2MBDTPP) ₂	220
Figure A71: IR spectrum of Co(S2MBDTPP) ₂ .NO ₃	221
Figure A72: IR spectrum of Cu(S2MBDTPP) ₂	221
Figure A73: IR spectrum of Ni(S2MBDTPP) ₂	222

Figure A74: IR spectrum of Zn(S2MBDTPP) ₂	222
Figure A75: IR spectra comparison of S4MBDTPP, TPPP and S4MBDTC	223
Figure A76: IR spectrum of S4MBDTPP	223
Figure A77: IR spectrum of Cd(S4MBDTPP) ₂	224
Figure A78: IR spectrum of Co(S4MBDTPP) ₂ .NO ₃	224
Figure A79: IR spectrum of Cu(S4MBDTPP) ₂	225
Figure A80: IR spectrum of Ni(S4MBDTPP) ₂	225
Figure A81: IR spectrum of Zn(S4MBDTPP) ₂	226
Figure B1: ¹ H NMR spectrum of SMDPB	227
Figure B2: ¹³ C NMR spectrum of SMDPB	227
Figure B3: ¹ H NMR spectrum of SBDPB	228
Figure B4: ¹³ C NMR spectrum of SBDPB	228
Figure B5: ¹ H NMR spectrum of S2MBDPB	229
Figure B6: ¹³ C NMR spectrum of S2MBDPB	229
Figure B7: ¹ H NMR spectrum of S4MBDPB	230
Figure B8: ¹³ C NMR spectrum of S4MBDPB	230
Figure B9: ¹ H NMR spectrum of SMDTPA	231
Figure B10: ¹³ C NMR spectrum of SMDTPA	231
Figure B11: ¹ H NMR spectrum of SBDTPA	232

Figure B12: ¹³ C NMR spectrum of SBDTPA	232
Figure B13: ¹ H NMR spectrum of S2MBDTPA	233
Figure B14: ¹³ C NMR spectrum of S2MBDTPA	233
Figure B15: ¹ H NMR spectrum of S4MBDTPA	234
Figure B16: ¹³ C NMR spectrum of S4MBDTPA	234
Figure B17: ¹ H NMR spectrum of SMDTPP	235
Figure B18: ¹³ C NMR spectrum of SMDTPP	235
Figure B19: ¹ H NMR spectrum of SBDTPP	236
Figure B20: ¹³ C NMR spectrum of SBDTPP	236
Figure B21: ¹ H NMR spectrum of S2MBDTPP	237
Figure B22: ¹³ C NMR spectrum of S2MBDTPP	237
Figure B23: ¹ H NMR spectrum of S4MBDTPP	238
Figure B24: ¹³ C NMR spectrum of S4MBDTPP	238
Figure C1: Mass spectrum of SMDPB	239
Figure C2: Mass spectrum of SBDPB	239
Figure C3: Mass spectrum of S2MBDPB	240
Figure C4: Mass spectrum of S4MBDPB	240
Figure C5: Mass spectrum of SMDTPA	241
Figure C6: Mass spectrum of SBDTPA	241

Figure C7: Mass spectrum of S2MBDTPA	242
Figure C8: Mass spectrum of S4MBDTPA	242
Figure C9: Mass spectrum SMDTPP	243
Figure C10: Mass spectrum of SBDTPP	243
Figure C11: Mass spectrum of S2MBDTPP	244
Figure C12: Mass spectrum of S4MBDTPP	244
Figure D1: UV-Vis spectrum of (SMDPB)) ₂ x 10 ⁻⁵ M	245
Figure D2: UV-Vis spectrum of Cd(SMDPB) ₂ x 10 ⁻⁵ M	245
Figure D3: UV-Vis spectrum of Co(SMDPB)2.NO3.3H ₂ O x 10 ⁻⁵ M	245
Figure D4: UV-Vis spectrum of Cu(SMDPB) ₂ x 10 ⁻⁵ M	245
Figure D5: UV-Vis spectrum of Ni(SMDPB) ₂ x 10 ⁻³ M	245
Figure D6: UV-Vis spectrum of $Zn(SMDPB)_2 \times 10^{-4} M$	245
Figure D7: UV-Vis spectrum of SBDPB x 10 ⁻⁵ M	246
Figure D8: UV-Vis spectrum of Cd(SBDPB) ₂ x 10 ⁻⁵ M	246
Figure D9: UV-Vis spectrum of Co(SBDPB) ₂ .N0 ₃ x 10 ⁻³ M	246
Figure D10: UV-Vis spectrum of Co(SBDPB) ₂ .NO ₃ x 10 ⁻³ M	246
Figure D11: UV-Vis spectrum of Cu(SBDPB) ₂ x 10 ⁻⁵ M	246
Figure D12: UV-Vis spectrum of Ni(SBDPB) ₂ x 10 ⁻³ M	246
Figure D13: UV-Vis spectrum of Ni(SBDPB) ₂ x 10 ⁻⁴ M	247

Figure D14: UV-Vis spectrum of Zn(SBDPB) ₂ x 10 ⁻⁴ M	247
Figure D15: UV-Vis spectrum of S2MBDPB x 10 ⁻⁴ M	247
Figure D16: UV-Vis spectrum of Cd(S2MBDPB) ₂ x 10^{-5} M	247
Figure D17: UV-Vis spectrum of Co(S2MBDPB) ₂ .NO ₃ x 10 ⁻³ M	247
Figure D18: UV-Vis spectrum of Cu(S2MBDPB) ₂ x 10 ⁻⁴ M	247
Figure D19: UV-Vis spectrum of Cu(S2MBDPB) ₂ x 10 ⁻⁵ M	248
Figure D20: UV-Vis spectrum of Ni(S2MBDPB) ₂ x 10 ⁻⁴ M	248
Figure D21: UV-Vis spectrum of $Zn(S2MBDPB)_2 \times 10^{-4} M$	248
Figure D22: UV-Vis spectrum of S4MBDPB x 10 ⁻⁴ M	248
Figure D23: UV-Vis spectrum of CdS4MBDPB) ₂ x 10 ⁻⁵ M	248
Figure D24: UV-Vis spectrum of Co(S4MBDPB) ₂ .NO ₃ x 10 ⁻³ M	248
Figure D25: UV-Vis spectrum of Co(S4MBDPB) ₂ .NO ₃ x 10 ⁻⁴ M	249
Figure D26: UV-Vis spectrum of Cu(S4MBDPB) ₂ x 10^{-3} M	249
Figure D27: UV-Vis spectrum of Cu(S4MBDPB) ₂ x 10^{-4} M	249
Figure D28: UV-Vis spectrum of Ni(S4MBDPB) ₂ x 10^{-3} M	249
Figure D29: UV-Vis spectrum of Ni(S4MBDPB) ₂ x 10^{-5} M	249
Figure D30: UV-Vis spectrum of $Zn(S4MBDPB)_2 \times 10^{-5} M$	249
Figure D31: UV-Vis spectrum of SMDTPA x 10 ⁻⁴ M	250
Figure D32: UV-Vis spectrum of Cd(SMDTPA)) ₂ x 10 ⁻⁴ M	250

Figure D33: UV-Vis spectrum of Co(SMDTPA) ₂ x 10^{-3} M	250
Figure D34: UV-Vis spectrum of Co(SMDTPA) ₂ .NO ₃ x 10 ⁻⁴ M	250
Figure D35: UV-Vis spectrum of Cu(SMDTPA) ₂ x 10^{-3} M	250
Figure D36: UV-Vis spectrum of Cu(SMDTPA) ₂ x 10^{-4} M	250
Figure D37: UV-Vis spectrum of Ni(SMDTPA) ₂ x 10^{-4} M	251
Figure D38: UV-Vis spectrum of $Zn(SMDTPA)_2 \times 10^{-4} M$	251
Figure D39: UV-Vis spectrum of SBDTPA x 10 ⁻⁴ M	251
Figure D40: UV-Vis spectrum of Cd(SBDTPA) ₂ x 10^{-4} M	251
Figure D41: UV-Vis spectrum of Co(SBDTPA) ₂ .NO ₃ x 10 ⁻³ M	251
Figure D42: UV-Vis spectrum of Co(SBDTPA) ₂ .NO ₃ x 10 ⁻⁴ M	251
Figure D43: UV-Vis spectrum of Cu(SBDTPA) ₂ x 10^{-3} M	252
Figure D44: UV-Vis spectrum of Cu(SBDTPA) ₂ x 10^{-4} M	252
Figure D45: UV-Vis spectrum of Ni(SBDTPA) ₂ x 10 ⁻⁴ M	252
Figure D46: UV-Vis spectrum of $Zn(SBDTPA)_2 \times 10^{-4} M$	252
Figure D47: UV-Vis spectrum of S2MBDTPA x 10 ⁻⁴ M	252
Figure D48: UV-Vis spectrum of Cd(S2MBDTPA) ₂ x 10^{-4} M	252
Figure D49: UV-Vis spectrum of Co(S2MBDTPA) ₂ .NO ₃ x 10 ⁻³ M	253
Figure D50: UV-Vis spectrum of Cu(S2MBDTPA) ₂ x 10^{-4} M	253
Figure D51: UV-Vis spectrum of Ni(S2MBDTPA) ₂ x 10 ⁻³ M	253

Figure D52: UV-Vis spectrum of Ni(S2MBDTPA) ₂ x 10 ⁻⁴ M	253
Figure D53: UV-Vis spectrum of Zn(S2MBDTPA) ₂ x 10 ⁻³ M	253
Figure D55: UV-Vis spectrum of S4MBDTPA x 10 ⁻⁴ M	253
Figure D55: UV-Vis spectrum of Cd(S4MBDTPA) ₂ x 10^{-4} M	254
Figure D56: UV-Vis spectrum of Co(S4MBDTPA) ₂ .NO ₃ x 10 ⁻³ M	254
Figure D57: UV-Vis spectrum of Cu(S4MBDTPA) ₂ x 10 ⁻³ M	254
Figure D58: UV-Vis spectrum of Cu(S4MBDTPA) ₂ x 10 ⁻⁴ M	254
Figure D59: UV-Vis spectrum of Ni(S4MBDTPA) ₂ x 10 ⁻³ M	254
Figure D60: UV-Vis spectrum of Zn(S4MBDTPA) ₂ x 10 ⁻⁴ M	254
Figure D61: UV-Vis spectrum of SMDTPP x 10 ⁻⁴ M	255
Figure D62: UV-Vis spectrum of Cd(SMDTPP) ₂ x 10^{-4} M	255
Figure D63: UV-Vis spectrum of Co(SMDTPP) ₂ .NO ₃ x 10 ⁻³ M	255
Figure D64: UV-Vis spectrum of Co(SMDTPP) ₂ .NO ₃ x 10 ⁻⁴ M	255
Figure D65: UV-Vis spectrum of Cu(SMDTPP) ₂ x 10 ⁻³ M	255
Figure D66: UV-Vis spectrum of Cu(SMDTPP) ₂ x 10 ⁻⁴ M	255
Figure D67: UV-Vis spectrum of Ni(SMDTPP) ₂ x 10 ⁻³ M	256
Figure D68: UV-Vis spectrum of Zn(SMDTPP) ₂ x 10 ⁻⁴ M	256
Figure D69: UV-Vis spectrum of SBDTPP x 10 ⁻⁴ M	256
Figure D70: UV-Vis spectrum of Cd(SBDTPP) ₂ x 10 ⁻⁴ M	256

Figure D71: UV-Vis spectrum of Co(SBDTPP) ₂ .NO ³ x 10 ⁻³ M	256
Figure D72: UV-Vis spectrum of CuSBDTPP) ₂ x 10 ⁻³ M	256
Figure D73: UV-Vis spectrum of Cu(SBDTPP) ₂ x 10 ⁻⁴ M	257
Figure D74: UV-Vis spectrum of Ni(SBDTPP) ₂ x 10 ⁻³ M	257
Figure D75: UV-Vis spectrum of Ni(SBDTPP) ₂ x 10 ⁻⁴ M	257
Figure D76: UV-Vis spectrum of Zn(SBDTPP) ₂ x 10 ⁻³ M	257
Figure D77: UV-Vis spectrum of S2MBDTPP x 10 ⁻⁴ M	257
Figure D78: UV-Vis spectrum of Cd(S2MBDTPP) ₂ x 10 ⁻³ M	257
Figure D79: UV-Vis spectrum of Co(S2MBDTPP) ₂ .NO ₃ x 10 ⁻³ M	258
Figure D80: UV-Vis spectrum of Co(S2MBDTPP) ₂ .NO ₃ x 10 ⁻⁴ M	258
Figure D81:UV-Vis spectrum of Cu(S2MBDTPP) ₂ x 10 ⁻³ M	258
Figure D82: UV-Vis spectrum of Cu(S2MBDTPP) ₂ x 10 ⁻⁴ M	258
Figure D83: UV-Vis spectrum of Ni(S2MBDTPP) ₂ x 10 ⁻³ M	258
Figure D84: UV-Vis spectrum of Ni(S2MBDTPP) ₂ x 10 ⁻⁴ M	258
Figure D85: UV-Vis spectrum of Zn(S2MBDTPP) ₂ x 10 ⁻³ M	259
Figure D86: UV-Vis spectrum of S4MBDTPP x 10 ⁻³ M	259
Figure D87: UV-Vis spectrum of Cd(S4MBDTPP) ₂ x 10 ⁻⁴ M	259
Figure D88: UV-Vis spectrum of Co(S4MBDTPP) ₂ .NO ₃ x 10 ⁻³ M	259
Figure D89: UV-Vis spectrum of Cu(S4MBDTPP) ₂ x 10 ⁻³ M	259

Figure D90: UV-Vis spectrum of Cu(S4MBDTPP) ₂ x 10 ⁻⁴ M	259
Figure D91: UV-Vis spectrum of Ni(S4MBDTPP) ₂ x 10 ⁻³ M	260
Figure D92: UV-Vis spectrum of Ni(S4MBDTPP) ₂ x 10 ⁻⁴ M	260
Figure D93: UV-Vis spectrum of Zn(S4MBDTPP) ₂ x 10 ⁻⁴ M	260
Table E1: Crystallographic Data and Structure Refinement Details for SMDPB	261
Table E2: Crystallographic Data and Structure Refinement Details for SMDTPA	266
Table E3: Crystallographic Data and Structure Refinement Details for SMDTPP	271
Table E4: Crystallographic Data and Structure Refinement Details for SBDTPP	276
Table E5: Crystallographic Data and Structure Refinement Details for SBDTPA	283
Table E6: Crystallographic Data and Structure Refinement Details for SBDTPP	289
Table E7: Crystallographic Data and Structure Refinement Details for S2MBDPB	295
Table E8: Crystallographic Data and Structure Refinement Details for S2MBDTPA	301
Table E9: Crystallographic Data and Structure Refinement Details for S4MBDPB	307
Table E10: Crystallographic Data and Structure Refinement Details for Co(SMDPB) ₂ NO ₃ .H ₂ O	313
Table E11: Crystallographic Data and Structure Refinement Details for Ni(S2MBDTPA) ₂	322

LIST OF ABBREVIATIONS

DTC	Dithiocarbazate
K-DTC	Potassiun-Dithiocarbazae
SMDTC	methylhydrazinecarbodithioate
SBDTC	benzylhydrazinecarbodithioate
S2MBDTC	2-methylbenzylhydrazinecarbodithioate
S4MBDTC	4-methylbenzylhydrazinecarbodithioate
HIV	Human Immunodeficiency Virus
TQMP4, L	8-[(pyridin-4-yl)methylthio] quinoline
DNA	Deoxyribonucleic acid
RNA	Ribonucleic acid
NLO	Non-Linear Optical properties
DPPB	2-(diphenylphosphino) benzaldehyde
TPPA	(triphenylphosphoranylidene) acetaldehyde
TPPP	1-(triphenyl phosphoranylidene)-2-propanone
SMDPB	(<i>E</i>)-methyl 2-(2-(diphenylphosphino)benzylidene) hydrazincarbodithiotae
SBDPB	(<i>E</i>)-phenyl 2-(2-(diphenylphosphino)benzylidene) hydrazincarbodithiotae

S2MBDPB	(<i>E</i>)-2-methylbenzyl 2-(2-(diphenylphosphino)benzylidene) hydrazincarbodithiotae
S4MBDPB	(<i>E</i>)-4-methylbenzyl 2-(2-diphenylphosphino)benzylidene) hydrazincarbodithiotae
SMDTPA	Methyl (2 <i>E</i>)-2-[2-(triphenyl- λ^5 -phosphanylidene) ethylidene]hydrazinecarbodithioate
SBDTPA	Phenyl (2 <i>E</i>)-2-[2-(triphenyl- λ^5 -phosphanylidene) ethylidene]hydrazinecarbodithioate
S2MBDTPA	2-methylphenyl (2 <i>E</i>)-2-[2-(triphenyl- λ^5 -phosphanylidene) ethylidene]hydrazinecarbodithioate
S4MBDTPA	4-methylphenyl (2 <i>E</i>)-2-[2-(triphenyl- λ^5 -phosphanylidene) ethylidene]hydrazinecarbodithioate
SMDTPP	Methyl(2 <i>E</i>)-2-[1-(triphenyl- λ^5 -phosphanylidene) propan-2-ylidene]hydrazinecarbodithioate
SBDTPP	Phenyl(2 <i>E</i>)-2-[1-(triphenyl- λ^5 -phosphanylidene) propan-2-ylidene]hydrazinecarbodithioate
S2MBDTPP	2-methylbenzyl(2 <i>E</i>)-2-[1-(triphenyl- λ^5 -phosphanylidene) propan-2-ylidene]hydrazinecarbodithioate
S4MBDTPP	4-methylbenzyl(2 <i>E</i>)-2-[1-(triphenyl- λ^5 -phosphanylidene) propan-2-ylidene]hydrazinecarbodithioate
TSC	Thiosemicarbazone
HPyTSC	Pyridine-2-aldehyde thiosemicarbazonato
HS(S)PPh ₂	Dithiodiphenylphosphine
MTB	Mycobacterium tuberculosis

REMA	Repetitive Excess Mixed Anhydride
ТВ	Tubercles Bacillus
IC ₅₀	Inhibition concentration at 50%
MIC	Minimum inhibitory concentration in $\mu g \text{ cm}^{-3}$
MTT	3-(4,5)-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide
ORTEP	Oak Ridge Thermal Ellipsoid Program
QSAR	Quantitative Structure-Activity Relationship
CHNS	Carbon, Hydrogen, Nitrogen, Sulphur
MCF-7	human breast cancer cell line with positive estrogen receptor
MDA-MB-231	Human breast carcinoma cells with negative estrogen receptor
MRSA	Methicillin resistant staphylococcus
B29	Bacillus subtilis wild type
60690	Pseudomonas aeruginosa
S.C	Salmonella choleraesuis
C.A	Candida albicans
398	Aspergillus ochraceous
20341	Saccaromyces cerevisiae

ICP-AES	Inductively Coupled Plasma-Atomic Emission Spectroscopic Analyses
UATR	Universal ATR (Attenuated Total Reflection Spectroscopy)
DMEM	Dulbecco's Modified Eagle Medium
dppm	(diphenylphosphino) methane
dppe	(diphenylphosphino) ethane
PBS	Phosphate buffered saline
FBS	Fetal bovine serum
NA	Nutrient Agar
PDA	Potato Dextrose Agar
HeLA	Cervical Cancer cells
ER	Estrogen
RNR	Ribonucleotide Reductase

TABLE OF CONTENTS

ABSTRACT

ABSTRAK

ADSIKAK	v
ACKNOWLEDGEMENT	vii
APPROVAL	Х
DECLARATION	xi
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF FIGURES AND TABLES IN APPENDICES	xvii
LIST OF ABBREVIATIONS	XXX
CHAPTER	
INTRODUCTION	1
1.1 Dithiocarbazate derivatives	2
1.2 Properties of Sulphur and Nitrogen as Donor Ligands	5
1.3 Phosphine ligands	7
1.4 Metal complexes	9
1.5 Biologically applicable Transition Metal Ions	10
1.5.1 Cadmium	10
1.5.2 Cobalt	11
1.5.3 Copper	12
1.5.4 Nickel	13
1.5.5 Zinc	14
1.5.6 Research problem	15
Objectives	16
LITERATURE REVIEW	17
2.1 Organophosphorous chemistry	19
2.2 Analogies Between the chemistry of phosphorous Compounds and that of related Element (N.S.C.).	20
2.3 Bioinorganic chemistry and biological activity	20
2.4 Bacteria, fungi and antimicrobial activity	24
2.5 Cancer therapy	26
2.5.1 Therapeutic inorganic complexes	27
2.5.2 Cancer Chemotherapy	28
2.5.3 Categories of Chemotherapy Drugs	29
2.5.4 Synthetic drugs	31

iii

v

2.6 Imminophosphine Ligands	33
2.7 Thione – thiol Tautomerism	38
2.8 FT-IR v(C-P) Stretching Modes	39
2.9 Transition metal complex with iminophosphine ligands	41
2.10 Phosphorus, Nitrogen and Sulphur Donor Ligands	42
as Multidentate Ligands	
2.10.1 Bidentate ligands	42
2 10 2 Tridentate Ligands	43
2 10 3 Tetradentate ligands	44
2.10.5 Telludentale inguitab	
MATERIALS AND METHODS	54
3.1 Chemicals	54
3 1 1 Reagents	54
3 1 2 Solvents	54
3.2 Preparation of Substituted Dithiocarbazate Compounds	55
3.2.1 Phenylhydrazinecarbodithioate (SBDTC)	55
3.2.2 Methyhydrazinecarbodithioate (SMDTC)	55
3 2 3 (2 or 4)-Methylphenylhydrazinecarbodithioate	56
3 3 Preparation of Schiff Bases	56
3 3 1 Preparation of Schiff Bases derived from	56
(2-(diphenylphosphino)benzaldehyde with	20
four dithiocarbazate isomers	
3 3 2 Preparation of Schiff Bases deriver from	57
(triphenylphosphoranylidene) acetaldehyde	0,
with four dithiocarbazate isomers	
3 3 3 Preparation of Schiff Bases derived from	58
(1-triphenylphosphoranylidene-2-propanone)	00
with four dithiocarbazate isomers	
3.4 Preparation of Metal Complexes	59
3.5 Physical Measurements and Elemental Analyses	60
3.5.1. Melting Points	60
3.5.2 Carbon, Hydrogen, Nitrogen and Sulphur (CHNS)	60
Elemental Analyses	
3.5.3 Mass Spectroscopic Analyses	60
3.5.4 ¹ H and ¹³ C Nuclear Magnetic Resonance	61
Spectroscopic (NMR) Analyses	-
3.5.5 Molar Conductivity Analyses	61
3.5.6 Magnetic Susceptibility Measurements	62
3.5.7 Inductively Coupled Plasma-Atomic	62
Emission Spectroscopic Analyses	
3.5.8 Ultraviolet/Visible Spectroscopic Analyses	63
3.5.9 Fourier Transform Infrared Spectroscopic	63
(FT-IR) Analyses	
3.6 Cytotoxic Assav	64
3.6.1 Cell Culture	64
3.6.2 Treatments and Sample Dilutions	64
3.6.3. MTT Assav	65
3.7 Single Crystal X-ray Determination using	66
Enraf-Nonius Kappa CCD Diffractometer at Oxford	

3.8 Determination of Biological Activities	66
3.9 Qualitative Antimicrobial Assay	67
RESULTS AND DISCUSSION	68
4.1 Physico-Chemical Data Analyses of the Schiff Bases and Their Metal Complexes	71
4.2 Fourier-Transform Infrared Data for the Schiff Bases and Their Transition Metal Complexes	77
4.3 ¹ H and ¹³ C Nuclear Magnetic Resonance (NMR) Spectroscopy Analyses	84
4.3.1 ¹ H NMR Spectral Analysis	84
4.3.2 ¹³ C NMR Analysis	86
4.4 Mass Spectral Analysis	90
4.5 Molar Conductance and Magnetic Data Analyses of the Schiff bases and Their Metal Complexes	101
4.6 Electronic Spectral Analysis for the Schiff Bases and Their Transition Metal Complexes	107
4.7. X-Ray Crystallographic Analysis	117
1. (<i>E</i>)-methyyl 2-(2-(diphenylphosphino)benzylidene) Hydrazincarbodithiotae (SMDPB) Schiff base of methylhydrazinecarbodithioate (SMDTC)	122
2. methyl (2 <i>E</i>)-2-[2-(triphenyl- λ ³ -phosphanylidene) ethylidene]hydrazine carbodithioate (SMDTPA) Schift base of methylhydrazinecarbodithioate (SMDTC)	123 f
3. methyl(2 <i>E</i>)-2-[1-(triphenyl-λ ³ -phosphanylidene) propan-2-ylidene]hydrazine carbodithioate (SMDTPP Schiff base of methylhydrazinecarbodithioate (SMDT	124) C)
 4. (E)-benzyl 2-(2-(diphenylphosphino)benzylidene) hydrazincarbodithiotae(SBDPB) Schiff base of benzylhydrazinecarbodithioate (SBDTC) 	125
5. phenyl (2 <i>E</i>)-2-[2-(triphenyl- λ^{5} -phosphanylidene) ethylidene]hydrazine carbodithioate (SBDTPA) Schiff base of benzylhydrazinecarbodithioate (SBDTC)	126
 6. benzyl(2E)-2-[1-(triphenyl-λ⁵-phosphanylidene) propan-2-ylidene]hydrazine carbodithioate (SBDTPP) Schiff base of benzylhydrazinecarbodithioate (SBDTC) 	127
 7. (E)-2-methylbenzyl 2-(2-(diphenylphosphino) benzylidene) hydrazine carbodithiotae (S2MBDPB) Schiff base of 2-methylbenzylhydrazine carbodithioate (S2MBDTC) 	128
8. 2-methylphenyl (2 <i>E</i>)-2-[2-(triphenyl- λ^5 -phosphany lidene)ethylidene] hydrazine carbodithioate (S2MBDTPA) Schiff base of 2-methylbenzylhydrazine carbodithioate (S2MBDTC)	129
9. (E)-4-methylbenzyl 2-(2-diphenylphosphino) benzylidene) hydrazin carbodithiotae (S4MBDPB) Schiff base of S-Benzyldithiocarbazate (S4MBDTC)	130
$\frac{1}{2} C_{0} (SMDDD) NO U O$	124
1. CO (SIMIDE D)2 NO3. π_2 O 2. Ni (S2MRDTPA)2	134
	155

4.8 Biological activity 4.9 Cytotoxic activities	136 148
CONCLUSION	158
REFERENCES	164
APPENDICES	186
A- INFRARED SPECTRA	186
B- NMR SPECTRA	227
C- MASS SPECTRA	239
D- UV-VISIBLE SPECTRA	245
E- X-RAY CRYSTALLOGRAPHIC ANALYSIS	260
LIST OF PUBLICATIONS	331
BIODATA OF THE STUDENT	332

