UNIVERSITI PUTRA MALAYSIA

OPTIMISED APPLICATION OF THE MICROWAVE EXTRACTION TECHNIQUE OF ESSENTIAL OILS FROM AQUILARIA MALACCENSIS LAMK WOOD AND CYMBOPOGON NARDUS (L.) RENDLE LEAVES

BIBI SABRINA BINTI YAHAYA

FS 2011 27
OPTIMISED APPLICATION OF THE MICROWAVE EXTRACTION
TECHNIQUE OF ESSENTIAL OILS FROM AQUILARIA MALACCENSIS
LAMK WOOD AND CYMBOPOGON NARDUS (L.) RENDLE LEAVES

By

BIBI SABRINA BINTI YAHAYA

Thesis Submitted to the School of Graduate Studies, University Putra Malaysia, in
Fulfillment of the Requirements for the Degree of Master of Science

May 2011
Abstract of thesis presented to the Senate of University Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

OPTIMISED APPLICATION OF THE MICROWAVE EXTRACTION TECHNIQUE OF ESSENTIAL OILS FROM AQUILARIA MALACCENSIS LAMK WOOD AND CYMBOPOGON NARDUS (L.) RENDLE LEAVES

By

BIBI SABRINA BINTI YAHAYA

May 2011

Chairman : Prof. Haji Kaida bin Khalid, PhD.
Faculty : Science

In this study, the important process parameters such as microwave power, temperature and extraction time of MET are controlled to obtain the highest yield of extracted essential oil. The microwave extraction method for the essential oil from gaharu and citronella grass is compared with the conventional extraction technique (CET). In such a way to obtain the first droplet of distillation, it is necessary to heat up only 10 to 13 minutes with MET against 25 to 45 minutes with CET for Aquilaria malaccensis wood while for Cymbopogon nardus extraction, it requires 3 to 7 minutes for MET and about 12 to 20 minutes for CET to obtain the first droplet of oil. After 1 hour of extraction, MET gives higher percentage yield of oil with 0.016% for wet distillation for Aquilaria malaccensis and 1.21% for Cymbopogon nardus while the percentage yield of oil obtained by the CET is only 0.140% for Aquilaria malaccensis and 3.51% for Cymbopogon nardus after 8 hours of extraction. Another parameter is day of soaking for the samples. It plays an important role in the extraction where by the long time the sample was soaked, the more yield were collected. The highest yield was 0.116% which
obtained in ten days of soaking. Identification of the chemical component was based on comparison of calculated retention indices and mass spectral data with literature values. The tested result of the oils showed some variation and differences in terms of GC profiles, concentration and chemical derivatives. In gaharu essential oil, the composition of oil isolated by the hydro distillation (MET) is dominated by dodecanoic acid, ethenyl ester, lauric acid, and vinyl ester yielding 12.75%. While in citronella essential oil, the composition is dominated by 6-octenal, 3,7-dimethyl and citronellal yielding 24.68%. This project is also looking for the various techniques of extraction process such as hydro (HD), dry (DD) and steam (SD) distillation techniques. The results from each technique were presented. The project has successfully proved that MET is more efficient than CET in terms of rapidity and the quantity of the yield.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

APLIKASI OPTIMUM MIKRO GELOMBANG BAGI PENGEKSTRAKAN MINYAK PATI DARIPADA KAYU AQUILARIA MALACCENSIS LAMK DAN DAUN CYMBOPOGON NARDUS (L.) RENDLE

Oleh

BIBI SABRINA BINTI YAHAYA

Mei 2011

Pengerusi : Profesor Haji Kaida bin Khalid PhD.

Fakulti : Sains

Dalam kajian ini, parameter-parameter proses penting seperti kuasa mikrogelombang, suhu dan masa dalam MET dikawal sepanjang proses pengekstrakan untuk memperoleh ekstrak minyak pati yang maksimum dan berkualiti tinggi. Kaedah mikrogelombang (MET) untuk ekstrak minyak pati dari kayu gaharu dan daun serai wangi dibandingkan dengan kaedah lama atau Conventional Extraction Technique (CET). Didapati titisan minyak pati pertama yang jatuh untuk adalah antara minit ke-10 dan ke-13 bagi MET dan antara minit ke 25 dan minit ke 45 bagi CET untuk sampel Aquilaria malaccensis. Manakala bagi sampel Cymbopogon nardus pula, adalah antara minit ke-3 dan minit ke-7 untuk MET dan antara minit ke-12 hingga minit ke-20 untuk CET. Selepas tempoh pengekstrakan selama 60 minit menggunakan gelombang mikro MET memberikan peratusan ekstrak yang lebih tinggi dengan 0.016% bagi Aquilaria malaccensis dan 1.21% untuk Cymbopogon nardus, manakala peratusan hasil ekstrak daripada CET hanya 0.14% untuk Aquilaria malaccensis dan 3.51% bagi Cymbopogon nardus selepas tempoh 8 jam tempoh pengekstrakan. Parameter lain adalah hari rendaman untuk
ACKNOWLEDGEMENTS

Alhamdulillah, all praise is due to Allah. In the name of Allah Most Gracious, Most Merciful that always opens to us the path of knowledge and Him who has given me strength and patience to finish my Masters degree. I would like to express my deepest gratitude to my beloved supervisor Professor Dr. Haji Kaida bin Khalid who is also the Chairman of the Research Committee for his countless support, invaluable thoughts, brilliant suggestions and patience throughout my Masters program. His infinite knowledge guided my research on some parts on occasions. Also, I would like to express my appreciation and special thanks to my co-supervisor, Professor Dr. Haji Aspollah Haji Md. Sukari for his help, guidance and knowledge throughout the research. I would like to thank University’s Research Park (TPU) for the samples supplied. I would also like to thank all the lecturers and staff of Physics Department, UPM especially the Applied Electromagnetic Lab staff, En. Roslim and En. Zulambiar and also the staff from Chemistry department especially En. Abbas, En. Isharuddin and En. Zainal for their various practical help and encouragement throughout the study. My deepest gratitude to my labmates for the invaluable help and co-operation in sharing information and ideas concerning my dissertation and to others who had helped me throughout this project. Thank you to those who are involved directly or indirectly in this project. I am blessed that we had have such a beautiful friendship and support of many people throughout my studies. Last but not least my sincere gratitude to my family especially my beloved parents, Juma Bee Abdul Hamid and my late father for their prayers, love and supports. May Allah bless them and reward them all the best rewards Herein and Hereafter.
I certify that a Thesis Examination Committee has met on 27 May 2011 to conduct the final examination of Bibi Sabrina binti Yahaya on her thesis entitled “Optimized Application of the Microwave Extraction Technique of Essential Oils from Aquilaria malaccensis Lamk. Wood and Cymbopogon nardus (L.) Rendle Leaves” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the Master of Science.

Member of the Thesis Examination Committee were as follows:

Mansor b. Hashim, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Azmi b. Zakaria, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Jumiah bt Hassan, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Sahrim b. Haji Ahmad, PhD
Professor
Faculty Science and Technology
Universiti Kebangsaan Malaysia
Malaysia
(External Examiner)

SHAMSUDDIN SULAIMAN, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

**Kaida bin Khalid, PhD**  
Professor  
Faculty of Science  
Universiti Putra Malaysia  
(Chairman)

**Mohd Aspollah Hj Md. Sukari, PhD**  
Professor  
Faculty of Science  
Universiti Putra Malaysia  
(Member)

---

**HASANAH MOHD GHAZALI, PhD**  
Professor and Dean  
School of Graduate Studies  
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is my original work except for quotations and citation which have been duly acknowledged. I also declare that it has not been previously and is not concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

--------------------------------------------

BIBI SABRINA BINTI YAHAYA

Date: 27 May 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION
Research Background                                                     1
Research Benefits and Potential                                          5
Literature Review
Essential Oil                                                            5
Manufacturing of Essential Oils                                          6
Microwave Extraction Technique (MET)                                     7
Conventional Extraction Method of Agarwood Oils                          8
and Citronella Oil
Introduced Technique: Microwave Extraction System (MES)                10
Problem Statement                                                        13
Objective                                                               13
Thesis Contents                                                          14

II LITERATURE REVIEW
Introduction                                                             15
Gaharu Wood and Citronella Grass                                        16
Microwave Assisted Extraction                                            18
Conventional Heating Method                                              25
Conclusion                                                              27

III THEORY
Introduction                                                            28
Microwaves in General                                                    29
Microwave Oven Energy Efficiency                                         30
How Microwaves in a Microwave Oven Works                                30
Interaction between Microwaves and Materials                            31
Dipole Rotation or Orientation Interaction                              36
Dielectric Properties of Water                                           37
Heating and Drying Process in Microwave Oven Cavity                      40
Absorption Power                                                         42
Dielectric Mixture Model 44
Moisture Content of Sample 47
Estimation of Absorption Power of Mixture Fresh Woods or Leaves, \((PA/\text{Vol})_{\text{in (mfw)}}\) during DD and WD 49

Input Data
Calculate power output of heating source 50

Dielectric properties of water, \(\varepsilon^*_w\) at specific frequency
\((0.13 \text{ GHz}< T_w=2.45\text{GHz}<20\text{GHz})\) and temperature
\((26^\circ\text{C}< T_w=90^\circ\text{C}<100^\circ\text{C})\) 52

Calculation of electric field strength inside the microwave oven cavity 54

Dielectric properties of mixture fresh woods or leaves 55

Dielectric properties of mixture fresh woods and fresh leaves during DD and WD 55

Electric field strength inside the mixture fresh woods during DD and WD 56

Absorption power inside the mixture fresh woods and fresh leaves during DD and WD 56

New absorption power inside of mixture fresh wood or leaves during DD and WD 57

Power Measurement Techniques 57

IV MATERIALS AND METHODOLOGY
Introduction 61
Sample Preparation Method 64
Sample- *Aquilaria* malaccensis and *Cymbopogon nardus* 65
Methodology
Moisture Content Measurements 66
Dielectric Measurements 69
Essential Oil Extraction 73
Microwave Extraction Method 74
Conventional Extraction Method 75
Chemical Analysis 84
Experimental Errors 86
## RESULTS AND DISCUSSION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>88</td>
</tr>
<tr>
<td>Results of Moisture Content</td>
<td>89</td>
</tr>
<tr>
<td>Results of Dielectric Properties and Power Absorption</td>
<td>91</td>
</tr>
<tr>
<td>Results of Extraction and Chemical Analysis</td>
<td>102</td>
</tr>
</tbody>
</table>

## CONCLUSION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Further Research</td>
<td>113</td>
</tr>
</tbody>
</table>

## REFERENCES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCES</td>
<td>118</td>
</tr>
</tbody>
</table>

## APPENDICES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPENDICES</td>
<td>123</td>
</tr>
</tbody>
</table>

## BIODATA OF STUDENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIODATA OF STUDENT</td>
<td>157</td>
</tr>
</tbody>
</table>

## LIST OF PUBLICATIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>158</td>
</tr>
</tbody>
</table>