UNIVERSITI PUTRA MALAYSIA

POLYMERIC MEMBRANE SENSORS FOR DETECTION OF TITANIUM (III) IONS BASED ON TRIPODAL- OR CALIXARENES-LIGAND AND DETECTION OF CHROMIUM (VI) USING METALLO-SALEN IONOPHORES

MAJID REZAYI

FS 2011 15
POLYMERIC MEMBRANE SENSORS FOR DETECTION OF TITANIUM (III) IONS BASED ON TRIPODAL- OR CALIXARENELIGAND AND DETECTION OF CHROMIUM (VI) USING METALLO-SALEN IONOPHORES

By

MAJID REZAYI

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

May 2011
Special dedication to my beloved parents
Currently, despite of many developments in the field of ion selective electrodes (ISEs), it continues to evolve. The introduction of low detection limit ISEs may open a new opportunity to determine trace target ions. Improvements of detection limits, selectivities, understanding the response mechanism and developing new membrane materials are constantly being reported in the literatures. Moreover, the development of ISEs used in hospital and industrial setting as well as in clinical, environmental and physiological research has been opened new horizons in front of us. This research is focused on the fabrication of new PVC-membrane sensors based on tris(2pyridyl) methylamine, tpm and c-methylcalix[4]resorcinarene, CMCR as an cationic ionophores for detection of titanium (III) cation, and also N,N'Bis(salicylidene) ethylenediamino cobalt(II), Co(SALEN) as an anionic ionophore for determining the chromate (II) anion.
The complex reactions of Co(SALEN) with chromate (II) anion, tpm and CMCR with titanium (III) cation in water (H$_2$O), acetonitrile (AN) and their binary mixture solutions at different temperatures by using the conductometric method, are investigated. The characterization and evaluation of materials are described. In addition, a variety of analytical methods, including UV-Vis spectroscopy, FT-IR spectroscopy, Scanning Electron Microscopy (SEM), are used to study these processes. Later on, the application and validation of proposed ISEs with the potentiometric titration, atomic absorption spectrometry (AAs) and inductively coupled plasma atomic emission spectrometry (ICP-AES) are studied. Based on conductometric measurement results, the stoichiometry of complex formation for all the cases of ion-ionophore is 1:1. Furthermore, the average of stability constant (log$K_f$) obtained for tpm-Ti(OH)(OH$_2$)$_5^{2+}$, CMCR-Ti(OH)(OH$_2$)$_5^{2+}$ and Co(SALEN)-CrO$_4^{2-}$ complexes at 25°C are 2.70, 3.13 and 3.02, respectively. Therefore, the mentioned ionophores can be used as sensing elements to fabricate ISE membranes for determination of titanium and chromate ions. These electroactive composite materials resulted in three new ionophore types which one based on selective ion-sensing membrane electrodes. They were fabricated for the determination of Ti (III) and CrO$_4$ (II) ions in solutions. The membrane sensors showed fast, stable and Nernstian response for the cation of titanium (III) and anion of chromate (II) over the concentration range from $1.0 \times 10^{-6}$ to $1.0 \times 10^{-2}$ M and $1.0 \times 10^{-6}$ to $1.0 \times 10^{-1}$ M at 25°C, over the pH range from 1 to 2.5 and 7 to 10 respectively. For titanium (III) cation, based on tpm and CMCR ionophores, the Nernstian slopes, detection limits and response times were 29.17±0.24 and 30.38±0.15 mV/decade of activity , $7.9 \times 10^{-7}$ and $8.9 \times 10^{-7}$ M, 20 and 15 s, respectively. For chromate (II)
anion, using Co(SALEN) ionophore, the Nernstian slope, detection limit and response time was $-28.33\pm0.10$ mV/decade of activity, $7.9\times10^{-7}$ M and <10 s. The direct determination of 4 to 39 µg/ml of titanium (III) standard solution and 2 to 48.5 µg/ml of chromate (II) standard solution showed an average recovery of 94.60, 94.70 and 96.03 % and a mean relative standard deviation of 1.8, 2.2 and 1.6% at 100.0 µg/ml for tpm, CMCR and Co(SALEN) sensors, respectively. Finally, the utilizing of electrodes as the end point indicators for potentiometric titration with EDTA and Pb(NO$_3$)$_2$ solutions for titanium (III) and chromate (II) sensors were successfully carried out respectively.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

SENSOR MEMBRAN POLIMERIK UNTUK PENGESANAN ION TITANIUM (III) BERDASARKAN TRIPODAL- ATAU KALIKSARENA- LIGAN DAN PENGESANAN KROMIUM (VI) MENGGUNAKAN IONOFOR METALLO-SALEN

Oleh

MAJID REZAYI

Mei 2011

Pengerusi: Profesor Anuar Kassim, PhD

Fakulti: Sains

Pada masa kini, perkembangan dalam bidang elektrod pemilih-ion (ISE) masih berterusan. Pengenalan ISEs dengan had pengesanan rendah ini membuka peluang baru untuk menentukan ion sasaran surih. Peningkatan had pengesanan, selektiviti, pemahaman mekanisma tindak balas dan perkembangan bahan membran baru secara berterusan telah dilaporkan di dalam banyak penerbitan literatur. Selain itu, pembangunan ISE untuk digunakan dalam hospital dan industri seperti dalam kajian klinikal, persekitaran dan fisiologi telah membuka era baru dalam bidang ini. Kajian ini difokuskan kepada pembuatan/fabrikasi deria (sensor) PVC-membran baru berdasarkan pada bahan tris(2piridil) metilamina, tpm dan c-metilcalix[4]resorcinarena, CMCR sebagai ionofor kationik untuk mengesan kation titanium (III), dan juga
N,N′Bis(salicilidena) etilenadiamo kobalt (II), Co(SALEN) sebagai ionofor anionik untuk menentukan anion kromat (II). Kompleks tindakbalas Co(SALEN) dengan anion kromat (II), tpm dan CMCR dengan kation titanium (III) dalam air (H2O), asetonitril (AN) dan larutan campuran binari kepada suhu yang berbeza dengan menggunakan kaedah konduktometri telah dikaji. Pencirian dan penilaian bahan dibincangkan. Selain itu, pelbagai kaedah analisis, termasuk serapan UV-Vis, spektroskopi FT-IR, Imbasan Mikroskop Elektron (SEM), digunakan dalam kajian proses ini. Seterusnya, aplikasi dan pengesahan untuk ISE yang dicadangkan, dikaji dengan pentitratian potentiometri, serapan atom (AA) dan induktif kupel plasma (ICP) spektrometri. Berdasarkan hasil pengukuran konduktometri, stoikiometri pembentukan kompleks untuk semua kes ion-ionofor adalah 1:1. Selain itu, pemalar kestabilan (logKf) purata yang diperolehi, untuk tpm-Ti(OH)(OH2)s2+, CMCR-Ti(OH)(OH2)s2+ dan Co(SALEN)-CrO42- kompleks pada suhu 25°C adalah 2.70, 3.13 dan 3.02, masing-masing.

Oleh kerana itu, ionofor tersebut boleh digunakan sebagai penderiaan unsur untuk membuat membran ISE bagi menentukan ion titanium dan kromat. Bahan komposit elektroaktif ini menghasilkan tiga jenis ionofor baru yang berdasarkan kepada membran pemilih ion-deria elektrod. Ionofor ini disediakan untuk penentuan Ti (III) dan CrO4 (II) ion dalam larutan. Sensor membran menunjukkan tindakbalas cepat, stabil dan rangsangan Nernstian untuk kation titanium (III) dan anion kromat (II) dalam lingkungan kepekatan dari 1.0×10⁻⁶ hingga 1.0×10⁻² M dan 1.0×10⁻⁶ hingga 1.0×10⁻¹ M pada 25°C, pada lingkungan pH 1 hingga 2.5 dan 7 hingga 10 masing-masing. Untuk kation titanium (III), berdasarkan ionofor tpm dan CMCR, kecerunan Nernst, had pengesahan dan masa tindakbalas adalah 29.17±0.24 dan 30.38±0.15 mV/dekad aktiviti, 7.9×10⁻
dan $8.9 \times 10^{-7}$ M, 20 dan 15 s, masing-masing. Untuk anion kromat (II), yang menggunakan Co(SALEN) ionofor, kecerunan Nernst, had pengesanan dan masa tindakbalas adalah -28.33±0.10 mV /dekad aktiviti, 7.9 $\times$ 10$^{-7}$ M dan <10 s. Penentuan langsung bagi 4 hingga 39 µg/ml titanium (III) larutan piawai dan 2 hingga 48.5 µg/ml kromat (II) larutan piawai menunjukkan perolehan semula purata 94.60, 94.70 dan 96.03% dengan sisihan piawai purata relatif 1.8, 2.2 dan 1.6% pada 100.0 µg/ml untuk tpm, CMCR dan Co(SALEN) sensor, masing-masing. Akhirnya, pengunaan elektrod sebagai penunjuk untuk titratan potensiometri dengan larutan EDTA dan Pb(NO$_3$)$_2$ menggunakan elektrod sensor titanium (III) dan kromat (II) masing-masing telah berjaya dilakukan.
ACKNOWLEDGEMENTS

In the name of Allah, the most merciful, the most compassionate:

My God! Let me out of the darkness of illusion, and let me be honourable by the light of understanding. My God, open to us the doors of thy compassion and uncover to us the treasures of the knowledge by thy compassion, the most compassionate of the compassionate ones.

This thesis is not an individual product; it is the result of much support for others.

First, I am ever grateful to the Almighty for being my guiding light in the preparation and writing of this thesis and throughout my life.

I would like to express my appreciation to my supervisory committee, Prof. Dr. Anuar Kassim, Prof. Dr. Lee Yook Heng, Assoc. Prof. Dr. Tan Wee Tee and Assoc. Prof. Dr. Nor Azah Yusof. I have gained a lot of experience and knowledge from your kind guidance.

I am also very grateful to my parents, who were my first teachers. You always have a piece in everything I do, and most often the best. I do not believe that this project could have been done without your phone calls, love, encouragement, and support, which sustained me each and every week.
My good classmates, labmates, and friends, you have filled my life every day and inspired me. I am a better person for having shared my life with you.

My dear housemates thank you for so much happiness during these four years of living together. I spent unforgettable moments in my life with you. Your kind support, your precious friendship, your help, and the good times that we enjoyed together will be valuable memories forever. I am a lucky person for meeting all of you!

For any others that I forgot to mention, I am humbly indebted!
I certify that a Thesis Examination Committee has met on 03 MAY 2011 to conduct the final examination of Majid Rezayi on his thesis entitled “Polymeric membrane sensors for detection of titanium (III) ions based on tripodal- or calixarene-ligand and detection of chromium (VI) using metallo-salen ionophores” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

**Sidik Silong, PhD**  
Associate Professor  
Faculty of Science  
Universiti Putra Malaysia  
(Chairman)

**Md. Jelas Haron, PhD**  
Professor  
Faculty of Science  
Universiti Putra Malaysia  
(Internal Examiner)

**Mohamad Zaki Ab. Rahman, PhD**  
Associate Professor  
Faculty of Science  
Universiti Putra Malaysia  
(Internal Examiner)

**Mei Xian Li, PhD**  
Associate Professor  
Faculty of Science  
Peking University  
(External Examiner)

---

**BUJANG KIM HUAT, PhD**  
Professor and Deputy Dean  
School of Graduate Studies  
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Anuar Kassim, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Lee Yook Heng, PhD
Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(Member)

Tan Wee Tee, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Nor Azah Yusof, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

__________________
MAJID REZAYI

Date: 03 May 2011
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxvi</td>
</tr>
</tbody>
</table>

## CHAPTER

### 1 INTRODUCTION

1.1 General Introduction  
1.2 Background of the Study  
1.3 Research Problem  
1.4 Research Objectives  
1.5 Outline of Thesis

### 2 LITERATURE REVIEW

2.1 History of ISEs  
2.1.1 Titanium Selective Electrode  
2.1.2 Chromate Selective Electrode  
2.2 Potentiometric Sensors  
2.2.1 Ion Selective Electrodes (ISEs)  
2.2.2 Coated Wire Electrodes (CWEs)  
2.2.3 Field Effect Transistors (FETs)  
2.2.4 All Solid State Ion Selective Electrodes (ASSISEs)  
2.3 Response mechanism of ISEs  
2.3.1 Dynamic Model  
2.3.2 Phase Boundary Potential Model  
2.3.3 The Nernst Equation  
2.3.4 The Nicolskii-Eisenman Equation  
2.4 Characterization of ISE  
2.4.1 Selectivity  
2.4.2 Detection Limit of ISEs  
2.4.3 Measuring Range of ISEs  
2.4.4 Response time of ISEs  
2.4.5 Life time of ISEs  
2.4.6 Reproducibility of ISEs  
2.5 The composition of ISE membrane  
2.5.1 The Polymeric Matrix  
2.5.2 The Ionophore (Membrane-Active Recognition)  
2.5.3 Plasticizer  
2.5.4 Lipophilic Ionic Additives
3 THERMODYNAMIC STUDIES OF COMPLEX FORMATION BETWEEN tpm, CMCR AND Co(SALEN) IONOPHORES WITH TITANIUM (III) AND CHROMATE (II) IONS IN AN-H_2O BINARY SOLUTIONS BY THE CONDUCTOMETRIC METHOD 53

3.1 Introduction 53
3.1.1 Molar and Equivalent Conductivity 55
3.1.2 Cell Constant 57
3.1.3 Solvation and Gutman Donor Number 57
3.1.4 Equilibrium Constant K_f of the Complex Formation 59
3.1.5 Thermodynamic Functions of the Complex Formation 60
3.1.6 GENPLOT Computer Program 62

3.2 Materials and methods 62
3.2.1 Experimental 62
3.2.2 Apparatus 63
3.2.3 Methodology 63

3.3 Results and Discussion 64
3.3.1 Study of Molar Conductivity versus the Molar Ratio of Ligand-to-Ion at Different Temperatures 65
3.3.2 Study of Complex Formation at Different Temperatures 74
3.3.3 Calculation of Thermodynamic Parameters 78
3.3.4 Study of Stability Constant of Complexes Versus Composition of Binary Mixed Solution 80
3.3.5 Van’t Hoff plots 82

3.4 Conclusion 84

4 CATION SELECTIVE ELECTRODE FOR TITANIUM (III) BASED ON TPM AND CMCR IONOPHORES 86

4.1 Introduction 86
4.1.1 Titanium Components Chemistry 87
4.1.2 Preparation Methods of Liquid Membrane ISEs 92

4.2 Materials and Methods 93
4.2.1 Experimental 93
4.2.2 Apparatus 94
4.2.3 Methodology 95

4.3 Results and Discussion 102
4.3.1 Working Concentration Range and Slope 102
4.3.2 Effect of Membrane Composition 103
4.3.3 Plasticizer Effect 107
4.3.4 Effect of Anionic Additives 109
4.3.5 Calibration Curve and Statistical Data 110
4.3.6 Repeatability and Reproducibility 111
4.3.7 Effect of Internal Solution 112
4.3.8 Potential Responses of Fabricated Electrodes for Other Cations 114
4.3.9 Effect of pH 119
4.3.10 Dynamic and Static Response times 120
4.3.11 Life time 123

xv
5 ANION SELECTIVE ELECTRODE FOR CHROMATE (II) BASED ON CO(SALEN) IONOPHORE

5.1 Introduction 141
  5.1.1 Chromium Components Chemistry 144
  5.1.2 Interaction of Co(SALEN) Ligand with Chromate Anion 146

5.2 Material and Methods 148
  5.2.1 Experimental 148
  5.2.2 Apparatus 149
  5.2.3 Methodology 149

5.3 Results and Discussion 152
  5.3.1 Optimization of Membranes Composition 152
  5.3.2 Plasticizer Effect 155
  5.3.3 Working Concentration Range and Slope 156
  5.3.4 Effect of Internal Solution 156
  5.3.5 Potential Responses of Fabricated Electrode for Other Anions 157
  5.3.6 pH Effect 160
  5.3.7 Dynamic and Static Response times 160
  5.3.8 Lifetime of the Electrode 162
  5.3.9 Selectivity of the Electrode 163
  5.3.10 UV-Vis study 165
  5.3.11 FT-IR study 166
  5.3.12 SEM study 167
  5.3.13 Analytical Application 169
  5.3.14 Comparison of Chromate-Selective Electrode in This Work with Other Reported Chromate-Selective Electrodes 170

5.4 Conclusion 172

6 SUMMARY, GENERAL CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH 173
  6.1 Summary 173
  6.2 General Conclusion 175
  6.3 Recommendations for Future Research 176

REFERENCES 179
APPENDICS 199
BIODATA OF STUDENT 207