UNIVERSITI PUTRA MALAYSIA

OPTIMIZED SYNTHESIS OF LIPASE-CATALYZED SYNTHESIS OF 3-O-(3',3'-DIMETHYSUCCINYL)-BETULINIC ACID BY IMMOBILISED NOVOZYME 435

SITI AMINAH BINTI GUNONG @ MOHD SHAH

FS 2010 33
OPTIMIZED SYNTHESIS OF LIPASE-CATALYZED SYNTHESIS OF 3-O-(3',3'-DIMETHYLSUCCINYL)-BETULINIC ACID BY IMMOBILISED NOVOZYME 435

By

SITI AMINAH BINTI GUNONG @ MOHD SHAH

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in fulfillment of the Requirement for Degree of Master

June 2010
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master

OPTIMIZED SYNTHESIS OF LIPASE-CATALYZED 3-O-(3',3'-DIMETHYLSUCCINYL)-BETULINIC ACID BY IMMOBILISED NOVOZYME 435

By

SITI AMINAH BINTI GUNONG @ MOHD SHAH

June 2010

Chairman: Prof. Dr. Faujan Bin H. Ahmad, PhD

Faculty: Science

The derivative of betulinic acid, 3-O-(3',3'-dimethylsuccinyl)-betulinic acid (5) was successfully synthesized by the reaction of betulinic acid and 2,2-dimethylsuccinic anhydride, catalyzed by immobilized lipase from Candida antarctica (Novozyme 435) in chloroform. The structure of the product was determined by spectroscopic methods. Effects of different reaction parameters were investigated and optimized in the model reaction. Optimum conditions to produce 3-O-(3',3'-dimethylsuccinyl)-betulinic acid (5) up to 78.1 % were observed at reaction time; 24 h, amount of enzyme; 100 mg, betulinic acid (1) (0.055 mmole) to 2,2-dimethylsuccinic anhydride (0.055 mmole) substrate molar ratio; 1:1 at 50 °C.
Response surface methodology (RSM) based on a five-level, three variables and central composite rotatable design (CCRD) was employed to evaluate the interactive effects of the parameters used in the synthesis methodology such as reaction time, temperature and enzyme amount. It was observed that, simultaneous increase in reaction time, temperature and amount of enzyme will increase the yields of 3-\textit{O}-(3',3'-dimethylsuccinyl)-betulinic acid (5). Based on the analysis of ridge max, the optimum conditions for the synthesis of 3-\textit{O}-(3',3'-dimethylsuccinyl)-betulinic acid (5) were as follows: 53.6 °C of reaction temperature, 28.15 hours of reaction time and 122 mg of enzyme for 1.0 mmol of betulinic acid (1) and 1.0 mmol of 2,2-dimethylsuccinic anhydride. The optimum predicted for percentage yield was at 83.93 % in which agree well with the actual value of 84.38 %.

In brief, the anticancer activity of betulinic acid (1) and 3-\textit{O}-(3',3'-dimethylsuccinyl)-betulinic acid (5) were evaluated against cultured human T-promyelocytic leukemia (HL-60), human breast cancer (MCF-7), human cervical carcinoma cancer (HeLa) and mouse embryonic fibroblast normal cell line (3T3) cells lines. In particular, 3-\textit{O}-(3',3'-dimethylsuccinyl)-betulinic acid showed nontoxic activity against human T-promyelocytic leukemia (HL-60) and human breast cancer (MCF-7) with IC\textsubscript{50} > 30 μg/ml. However, it has better activity against human cervical carcinoma cancer (HeLa) (IC\textsubscript{50} 1.9 μg/ml) compared to betulinic acid (IC\textsubscript{50} 4.8 μg/ml). Interestingly, both compound were highly inactive against mouse embryonic fibroblast normal cell line (3T3) with IC\textsubscript{50} > 30 μg/ml.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Sarjana

OPTIMUM SINTESIS TINDAKBALAS-PEMANGKINAN BAGI 3-O-(3',3'-DIMETHILSUKSINIL)-ASID BETULINIK MENGGUNAKAN NOVOZYME 435

Oleh

SITI AMINAH BINTI GUNONG @ MOHD SHAH

Jun 2010

Pengerusi: Prof. Dr. Faujan Bin H. Ahmad, PhD

Faculti: Sains

Terbitan asid betulinik, 3-O-(3',3'-dimethilsuksinil)-asid betulinik (5) telah berjaya dihasilkan melalui tindakbalas antara asid betulinik dan 2,2-dimethilsuksinik anhidrida menggunakan enzim daripada Candida antartica (Novozyme 435) sebagai pemangkin tindak balas dalam kloroform. Struktur sebatian hasil tindak balas ditentukan melalui analisis spektroskopi. Kesan untuk pelbagai parameter juga telah dikaji dan dioptimumkan sebagai model tindak balas. Keadaan optimum untuk menghasilkan 3-O-(3',3'-dimethilsuksinil)-asid betulinik (5) sehingga 78.1% telah diperolehi dalam masa tindak balas 24 jam, kuatiti enzim 100 mg, asid betulinik (1) (0.055 mmol) kepada 2,2-dimethilsuksinik anhidrida (0.055 mmol) nisbah molar substrak; 1:1 pada suhu 50 °C.
Analisis kaedah permukaan respon (RSM) telah digunakan untuk menilai kesan interaktif bagi tindak balas sintesis pada pelbagai parameter yang digunakan seperti masa tindak balas, suhu tindak balas dan jumlah pemangkin terhadap hasil tindak balas sebatian 3-O-(3',3'-dimethylsulksinil)-asid betulinik (5). Analisis menunjukkan bahawa keadaan optimum untuk sintesis 3-O-(3',3'-dimethylsulksinil)-asid betulinik (5) adalah seperti berikut: 53.6 °C suhu tindak balas, 28.15 jam masa tindak balas dan 122 mg jumlah pemangkin bagi 1.0 mmol asid betulinik (1) dan 1.0 mmol 2,2-dimethylsulksinik anhidrida yang digunakan. Peratusan hasil tindak balas yang dijangkakan adalah sebanyak 83.93% dimana hasil ini bertepatan dengan hasil sebenar tindak balas iaitu sebanyak 84.38%.

Secara ringkasnya, aktiviti anti-kanse asid betulinik dan terbitannya, 3-O-(3',3'-dimethylsulksinil)-asid betulinik (5) telah diuji untuk melawan penyakit leukemia (HL-60), kanser payudara (MCF-7), kanser serviks (HeLa) dan sel normal tikus (3T3). Hasil kajian menunjukkan bahawa 3-O-(3',3'-dimethylsulksinil)-asid betulinik (5) tidak toksik terhadap penyakit leukemia (HL-60), kanser payudara (MCF-7) dan kanser serviks (HeLa) dengan nilai IC₅₀ > 30 μg/ml. walaubagaimanapun, sebatian ini mempunyai aktiviti yang lebih baik untuk melawan kancer serviks (HeLa) (IC₅₀ 1.9 μg/ml) berbanding asid betulinik (1) (IC₅₀ 4.8 μg/ml). Menariknya, kedua-dua sebatian ini (asid betulinik (1) dan 3-O-(3',3'-dimethylsulksinil)-asid betulinik (5)) adalah sangat tidak aktif terhadap sel normal tikus (3T3) dengan nilai IC₅₀ > 30 μg/ml.
ACKNOWLEDGEMENTS

All praises to Allah, Lord of the universe. Only by His grace and mercy this thesis can be completed.

My deepest gratitude and sincere appreciation is owed to Prof. Dr. Faujan Bin H. Ahmad for his invaluable guidance, support, continuous encouragement and patience during the course of my laboratory work and throughout the completion of this thesis.

My gratitude also goes to the members of my supervisory committee, Prof. Dr. Mahiran Basri and Dr. Siti Mariam Md. Noor for their useful suggestions and helpful comments throughout the course. I also wish to express my sincere gratitude to Prof. Dr. Ambar Yarmo from Department of Chemistry, Faculty of Science and Technology, Universiti Kebangsaan Malaysia for helping with the spectroscopic analysis of my sample.

Special thanks are due to staff of Department of Chemistry, Faculty of Science and Mrs. Norhaszlina Md. Isa from Institute of Bioscience (IBS) for providing the facility and information to carry out bioactivity test of my samples. My special appreciation is also extended to my best friend, Ms. Maizatulakmal Yahayu, my labmates, Ms. Tang Sook Wah, Ms. Rahayu Utami Umar, Mr. Zulkhairi Azid, Mrs. Najihah Hashim, Mr. Peter Chang Nge Lee and Mrs. Winda Oktima for their kind help and friendly attitude.
To my beloved parents, Hj. Gunong @ Mohd Shah and Mrs. Noorati Binti Hj. Husin, I would like to express my deepest affection for their support, love and understanding. In addition, I would like to express my special thanks also to my sister and brothers, Noraisyah, Ahmad Yusof and Mohammad Ismail for their love and support during my study.

Finally, I would like to acknowledge the financial support provided by Universiti Putra Malaysia via GRF scholarship along this study.
I certify that a Thesis Examination Committee has met on 18 October 2010 to conduct the final examination of Siti Aminah Binti Gunong @ Mohd Shah on her thesis entitled “Optimized synthesis of lipase-catalyzed 3-O-(3',3'-dimethylsuccinyl)-betulinic acid by immobilised Novozyme 435” in accordance with the Universities and Universities Colleges Act 1971 and the Construction of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the Degree of Master.

Members of the Thesis Examination Committee were as follows:

Gwendoline Ee Cheng Lian, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Taufiq Yap Yun Hin, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Intan Safinar Ismail, PhD
Lecturer
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Nor Hadiani Ismail, PhD
Professor
Faculty of Applied Science
Universiti Teknologi MARA
(External Examiner)

SHAMSUDDIN SULAIMAN, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 23 December 2010
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement of the degree of master. The members of supervisory committee were as follows:-

Faujan Bin H. Ahmad, PhD
Professor
Department of Chemistry
Faculty of Science
Universiti Putra Malaysia

Mahiran Basri, PhD
Professor
Department of Chemistry
Faculty of Science
Universiti Putra Malaysia

Siti Mariam Md. Noor, PhD
Lecturer
Department of Chemistry
Faculty of Science
Universiti Putra Malaysia

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree of Universiti Putra Malaysia or at any other institution.

SITI AMINAH BINTI GUNONG @ MOHD SHAH

Date: 18 October 2010
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>INTRODUCTION</th>
<th>LITERATURE REVIEW</th>
<th>MATERIALS AND METHODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Thin Layer Chromatography (TLC) 42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Fourier Transform-Infrared Spectroscopy (FT-IR) 44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Direct Induction Probe-Mass Spectrometry (DIP-MS) 44</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>38</td>
<td></td>
</tr>
</tbody>
</table>
Nuclear Magnetic Resonance (NMR)
Synthesis of 3-O-(3',3'-dimethylsuccinyl)-betulinic acid
Esterification reaction
Isolation and purification for betulinic acid ester
Optimization Studies
Study on Individual Parameter Effects on Enzymatic Reaction between Betulinic Acid and 2,2-dimethylsuccinic anhydride
Effect of Different Reaction Time on the Esterification Reaction
Effect of Different Reaction Temperature on the Esterification Reaction
Effect of Different Amount of Enzyme on the Esterification Reaction
Effect of Different Amount of Anhydride on the Esterification Reaction
Effect of Reused Enzyme on the Esterification Reaction
Study on Interactive effects of Enzymatic reaction Parameters and their Optimization Using Response Surface Methodology (RSM)
RSM Design
Statistical and Graphical Analyses
Reaction Optimisation and Model Validation
Reaction for Optimization
Scalling –Up of 3-O-(3',3'-dimethylsuccinyl)-betulinic acid Production
Bioassay Screening Method
Cytotoxic Activity

PRELIMINARY STUDY
Synthesis of bi-functional betulinic acid derivatives

RESULTS AND DISCUSSION
Analysis of Betulinic Acid
Spectral characterization of betulinic acid
Esterification Reaction (Reaction of Betulinic Acid With 2,2-Dimethylsuccinic Anhydride)
Identification of the product
Optimization of Esterification by Individual Parameters
Effect of Reaction Time
Effect of Different Reaction Temperature
Effect of Different Amount of Enzyme
Effect of Different Amount of Anhydride (molar ratio)
Effect of Reused Enzyme on the Esterification Reaction 75
Optimization of Esterification Reaction by RSM 76
Analysis of Variance (ANOVA) 76
Regression Analysis 80
Response Surface Analysis 81
Interactive Effect of Reaction Time and Reaction Temperature \(X_1X_2\) 81
Interactive Effect of Reaction Time and Amount of Enzyme \(X_1X_3\) 82
Interactive Effect of Reaction Temperature and Amount of Enzyme \(X_2X_3\) 83
Optimization and Model Validation 84
Scaling-Up production of 3-O-(3',3'-dimethylsuccinyl)-betulinic acid 85
Biological Activity Studies 86
Preliminary Result 90
Biological activity of preliminary product 93

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH
Conclusions 95
Recommendations for further studies 97

REFERENCES 98
APPENDICES 105
BIODATA OF STUDENT 126
LIST OF PUBLICATIONS 127