UNIVERSITI PUTRA MALAYSIA

SYNTHESIS AND CHARACTERIZATION OF CDS /SIO2 NANOCOMPOSITES

AESHAH NIZAR SALEM

FS 2010 32
SYNTHEESIS AND CHARACTERIZATION OF CDS /SIO₂
NANOCOMPOSITES

By
AESHAH NIZAR SALEM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirements for the Degree of Master of Science

November 2010
To my supervisor, my friends, my mother and my father who always had confidence
and offered me encouragement and support in all my endeavours.

-May Allah save them all...
SYNTHEESIS AND CHARACTERIZATION OF CdS /SiO₂
NANOCOMPOSITES

By

AESAH NEIZAR SALEM

November 2010

Supervisor: Professor Abdul Halim Shaari, PhD

Faculty : Science

Core-shell nanocomposites are gaining lots of interest due to their potential application in different field like catalysis, sensor, electronic, biomedical ect. In addition, they show better properties when two different element nanoparticles coating each other than a single nanoparticles is used. In this thesis, we studied the synthesis Rout and characterization of CdS/PVA nanoparticles by hydrothermal method with different concentration of cadmium acetate deposited in a PVA matrix. SiO₂ nanoparticles by the sol-gel method with different concentrations of TEOS and CdS / SiO₂ core-shell nanocomposites by encapsulation Stober method. The result obtain by analysis of the product of CdS/PVA, SiO₂ and CdS / SiO₂ core-shell nanocomposites have successful. The result of X-ray diffraction (XRD) analysis shows the cubic and hexagonal structure of the CdS nanoparticles, amorphous phase of SiO₂ and CdS/SiO₂ core-shell nanocomposites, The electrical properties including the d.c. conductivity of CdS/PVA were found to be 2×10^{-7} S/cm, and optical band gap
energy 2.53 eV respectively. To improve conductivity of SiO₂ nanoparticles when prepared CdS/SiO₂ nanocomposites were found to be 6×10^{-10} S/cm. The FTIR measurement absorption centred at 690 cm\(^{-1}\) corresponding to the Cd–O. And at 1200 cm\(^{-1}\) is assigned to Si-O group. However, The peak of PVA/CdS/SiO₂ particles was wider at about 3500 cm\(^{-1}\). The morphology of nanoparticles and nanocomposite study by (TEM) mentioned that the composites were estimated as being from 5-15 nm for CdS, 25- 140 nm for SiO₂, and the CdS/SiO₂ was estimated to be around 15 nm for the core and above 30 nm for the shell.
Abstrak ini di kemukakan kepada Senat University Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

SINTESIS DAN PEMBENTUKAN CDS/SIO₂ NANOCOMPOSITES

Oleh

AESHAH NIZAR SALEM

November 2010

Penyelia: Professor Abdul Halim Shaari, PhD

Fakulti: Fakulti Sains

kejiruan 2 x 10^{-7} S/cm dan jalur tenaga optic pada 2.53 eV. Di dapati konduktiviti partikel nano SiO$_2$ bertambah baik dalam bentuk CdS/SiO$_2$. Pengukuran serapan FTIR berpusat pada 690cm$^{-1}$ selaras dengan Cd-O dan pada 1200cm$^{-1}$ selaras dengan kumpulan Si-O. Walaubagaimanapun, kemuncak PVA/CdS/SiO$_2$ adalah pada kelebaran 3500cm$^{-1}$. Morfologi partikel dan komposit nano yang dikaji melalui *Transition Electron Microscope* (TEM) menunjukkan ukuran antara 5-15nm untuk CdS, 25-140 nm untuk SiO$_2$ dan CdS/SiO$_2$ sekitar 15nm ukuran teras dan 30nm untuk litupannya.
ACKNOWLEDGEMENTS

To God all is possible. I would like to thank God Almighty for granting me strength, wisdom, courage and perseverance to carry out this work. I would also like to thank my government, Saudi Arabia, to give me the chance to complete my postgraduate study.

I would like to thank my supervisor Prof. Abdul Halim Shaari and Prof. Shahidan for giving me the opportunity to write my thesis and provide guidance during each stage of this work.

I would also like to thank my brother and parents for providing me with advice and help while I was in Malaysia.

This project would not have been possible without the support and encouragement of my dear friends.

Finally, I would like to thank all of my lecturers, colleagues, and UPM staff for their cooperation and support.
I certify that a Thesis Examination has met on to conduct the final examination of Aeshah Nizar Salem on her thesis entitled “Synthesise and characterization of CdS/ SiO₂ nanocomposites in accordance with the Universities and University colleges Act 1971 and the Constitution of the University Putra Malaysia [P. U. (A) 106] 15 March 1998. The committee recommends that the student be awarded the name of relevant degree.

Member of the thesis Examination Committee were as follows:

Chairperson, PhD
Faculty of Graduate Studies
University Putra Malaysia
(Chairman)

Examiner 1, PhD
Faculty of Graduate Studies
University Putra Malaysia
(Internal Examination)

Examiner2, PhD
Faculty of science and Environmental
University Putra Malaysia
(Internal Examination)

External Examiner, PhD
Faculty of Graduate Studies
(External Examination)

BUJANG KIM HUAT, PhD
Professor and Dean
Scholl of Graduate Studies
University Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Master of Science. The members of the Supervisory Committee were as follows

Abdul Halim Shaari, PhD
Professor
Faculty of Science
University Putra Malaysia
(Chairman)

Chen Soo Kien, PhD
Associate Professor
Faculty of Science
University Putra Malaysia
(Member)

Lim Kean Pah, PhD
Associate Professor
Faculty of Science
University Putra Malaysia
(Member)

Shahidan Radiman, PhD
Professor
School of Applied Physics
Faculty of science and technology
University Kebangsaan Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

AESAH NIZAR SALEM

Date:
TABLE OF CONTENT

DEDICATION ii
ABSTRACT iii
ABSTRAK vi
ACKNOWLEDGEMENTS vii
APPROVAL ix
DECLARATION x
LIST OF FIGURES xvi
LIST OF TABLES xvii
LIST OF ABBREVIATIONS xxii

CHAPTER

1 INTRODUCTION 1
1.1 Problem of the Statement 2
1.2 Significant of the study 2
1.3 Scope of the present study 3
1.4 Objectives of the study 3
1.5 Layout of thesis 4

2 LITERATURE REVIEW 5
2.1 Introduction 5
2.2 History point in nanotechnology 11
2.2.1 Bottom up & top down 11
2.3 A brief review on silica encapsulation of nanoparticles 15
2.4 Core-shell nanocomposites 16
2.5 Advantages of silica shell (colloidal stability, cytotoxicity, etc) 17
2.6 Applications of nanocrystals 20
2.6.1 Metal Oxides In Nano Scale 21
2.7 Syntheses Methodologies 23
2.7.1 Stöber method 23
2.7.2 Microemulsion method 25
2.7.3 Hydrothermal method 30
2.8 Surface derivation on silica shell 31

3 METHODOLOGY 34
3.1 Introduction 34
3.2 Materials 34
3.3 Experiment methodology 35
3.3.1 Synthesis CdS nanoparticles 35
3.3.2 Synthesis SiO$_2$ nanoparticles 37
3.3.3 Synthesis of CdS/SiO$_2$ nanocomposite core-shell 39
3.4 Instrumentation for Characterization 41
4 RESULTS AND DISCUSSION

4.1 Introduction 54

4.2 X-ray diffraction Analysis 54

4.2.1 XRD Analysis of CdS 54

4.2.2 XRD Analysis of SiO2 58

4.2.3 XRD Analysis of CdS/SiO2 59

4.3 UV-analysis 60

4.3.1 UV- analysis of CdS/PVA nanoparticles 60

4.3.2 UV- analysis of SiO2 nanoparticles 62

4.3.3 UV- analysis of CdS/SiO2 nanoparticles 64

4.4 Band gap energy 67

4.5 Electrical properties 68

4.5.1 The d.c Conductivity 68

4.6 Infrared Spectroscopy Analysis 70

4.7 Morphology Analysis By The TEM 71

4.7.1 Effect of cadmium acetates on the morphology of CdS/PVA 71

4.7.2 Effect of TEOS and ammonia on SiO2 nanoparticles 73

4.7.3 Effect of CdS nanoparticles on CdS/SiO2 core-shell 76

4.8 Analysis for SEM Morphology 78

4.8.1 SiO2 morphology (SEM) 78

4.8.2 CdS/PVA (SEM studies) 81

4.8.3 The SEM morphology of CdS/PVA/SiO2 core-shell 86

5 CONCLUSIONS AND SUGGESTION

Conclusion 90

Suggestion 92

REFERENCES 93

BIODATA OF STUDENT 104