UNIVERSITI PUTRA MALAYSIA

AIRBORNE RESIDUES OF PARAQUAT, GLYPHOSATE AND CHLORPYRIFOS IN RICE FIELDS OF SUNGAI BESAR, SELANGOR, MALAYSIA

MD. MAHBUB MORSHED

FP 2011 9
AIRBORNE RESIDUES OF PARAQUAT, GLYPHOSATE AND CHLORPYRIFOS IN RICE FIELDS OF SUNGAI BESAR, SELANGOR, MALAYSIA

By

MD. MAHBUB MORSHED

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

July 2011
Dedicated to
my late father Md. Abdul Haque
my mother Lutfun Nahar
my wife Dr. Shahanaz Sultana
my beloved daughter Maleeha Muniyat
for their endless love and sacrifices
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

AIRBORNE RESIDUES OF PARAQUAT, GLYPHOSATE AND CHLORPYRIFOS IN RICE FIELDS OF SUNGAI BESAR, SELANGOR, MALAYSIA

By

MD. MAHBUB MORSHED

July 2011

Chairman : Professor Dzolkifli Omar, PhD
Faculty : Agriculture

Due to government subsidies and lack of labour, rice farmers in Malaysia generally use large amount of pesticides in a season starting from land preparation until maturity. The intensive use of pesticides has resulted into serious contamination of the environment, because substantial amount of agriculturally applied pesticides have been shown to become airborne during and after application that ultimately cause acute and chronic health hazards to field workers. In this study, airborne residue levels of three widely used pesticides (paraquat, glyphosate, and chlorpyrifos) were determined in two rice seasons (wet and dry) at three sampling locations (Kampung Pasir Panjang, Kampung Simpang Lima and Kampung Sungai Panjang) in Sungai Besar, Malaysia. Air was sampled in 12h day time with a 4h sampling intervals at both pre-and post-spray sampling events by using three simple and low-cost passive samplers (cotton gauze, cellulose filter, and polyurethane foam (PUF) samplers) and two active samplers (PUF plug and quartz filter cartridges). Moreover, air was pumped in the breathing zone of the
spray operator to measure the possible amount of pesticides breathed in during field spraying. For accurate residue analysis of air samples, analytical method validation was performed that showed the fitness of methods for each compound undertaken in this study. Studies on passive sampler’s performance validation showed that the performance of passive samplers were consistent. Satisfactory correlation coefficient ($r^2 = 0.979$) was observed in paired comparison between active and passive sampling methods, and passive sampling showed significantly better performance over active sampling method with respect to airborne residue measurement. Among the three passive air samplers, cotton gauze showed significantly the highest deposition for particle-bound pesticides – paraquat and glyphosate (15.56 and 2.49 ng/cm2, respectively), whereas PUF sampler showed the highest for vapor-bound pesticide – chlorpyrifos (48.80 ng/cm2). In active air samplers, paraquat and glyphosate residues were detected only in quartz fibre filter cartridges (0.52 and 0.10 µg/m3, respectively); on the other hand, chlorpyrifos was detected on PUF plug cartridges (2.54 µg/m3). Data on airborne residue measured in the rice growing area revealed that among the three compounds, glyphosate was measured in the lowest amount in the air followed by paraquat and chlorpyrifos. In day-long sampling events, however, virtually no residue was detected in any of the samples exposed in the pre-event sampling, and obviously, the highest airborne residue was measured during spraying at breathing zone of the spray operator, and subsequently the residue levels were drastically dropped in the post-spray sessions. Moreover, in post-spray sampling sessions, the residue level was consistently higher during first 0-4 hours relative to that of second 4-8 hrs sampling events. Furthermore, residue amounts showed spatial (location-wise) as well as seasonal
variations during which local environmental conditions, physiochemical properties of
the compound and its application technique played very important role on pesticides
atmospheric deposition. In comparison between rice seasons, residue amounts measured
by passive and active sampling methods showed higher detection in dry season (18.83,
8.59 ng/cm2 and 0.76, 0.28 µg/m3 for paraquat; 2.82, 1.03 ng/cm2 and 0.28, 0.06 µg/m3
for glyphosate; 48.62, 19.71 ng/cm2 and 4.19, 1.54 µg/m3 for chlorpyrifos, respectively)
than that of wet season (13.68, 4.84 ng/cm2 and 0.56, 0.19 µg/m3 for paraquat; 1.62,
0.55 ng/cm2 and 0.13, 0.00 µg/m3 for glyphosate; 21.28, 9.36 ng/cm2 and 1.79, 0.54
µg/m3 for chlorpyrifos, respectively). However, seasonal variations showed insignificant
effects on airborne residue for paraquat and glyphosate, but significant effect for
chlorpyrifos. Interestingly, seasonal effect was insignificant for paraquat, glyphosate
and chlorpyrifos on respirable residues (109.74, 32.50, 153.50 µg/m3 in wet season and
108.66, 31.73, 186.68 µg/m3 in dry season, respectively) in the air around the spray
operator’s breathing zone during spraying in the field. In extrapolated field operators
exposure assessment, both potential dermal (5 to 7 and 15 to 30 times, respectively) and
inhalation (40 and 100 times, respectively) doses were higher than the proposed
acceptable operators exposure level (AOEL) for paraquat and chlorpyrifos, whereas,
both doses were far below the proposed AOEL for glyphosate.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Dokor Falsafah

SISA UDARA PARAQUAT, GLYPHOSATE DAN CHLORPYRIFOS DI SAWAH PADI SUNGAI BESAR, SELANGOR, MALAYSIA

Oleh

MD. MAHBUB MORSHED

Julai 2011

Pengerusi : Profesor Dzolkhifli Omar, PhD
Fakulti : Pertanian

Oleh kerana subsidi kerajaan dan kekurangan buruh, pesawah padi di Malaysia amnya menggunakan sejumlah besar racun perosak pada musim yang bermula dari penyediaan tanah sehingga matang. Penggunaan intensif racun perosak telah membawa kepada pencemaran alam sekitar yang serius, kerana jumlah yang besar racun perosak pertanian yang diguna menunjukkan udara semasa dan selepas penggunaan yang akhirnya menyebabkan bahaya kesihatan yang akut dan kronik kepada pekerja-pekerja lapangan. Dalam kajian ini, tahap sisa-sisa udara tiga racun perosak yang digunakan secara meluas (paraquat, glyphosate, dan chlorpyrifos) telah ditentukan dalam dua musim padi (basah dan kering) di tiga lokasi pensampelan (Kampung Pasir Panjang, Kampung Simpang Lima dan Kampung Sungai Panjang) di Sungai Besar, Malaysia. Udara disampel dalam masa sehari 12 jam dengan selang pensampelan 4 jam di kedua-dua sebelum dan selepas pensampelan semasa semburan dengan menggunakan tiga contoh pasif yang mudah dan kos yang rendah (kapas kain kasa, selulosa penapis, dan busa polyurethane (PUF) patch) dan dua sampel yang aktif contingency (plug PUF dan kuarza kartrij penapis).
Selain itu, udara dipam dalam zon pernafasan pengendalian semburan untuk mengukur jumlah yang mungkin racun perosak ditiupkan dalam semasa bidang penyemburan. Untuk analisis sisa-sisa yang tepat sampel udara, pengesahan kaedah analisis yang telah dilakukan dengan menunjukkan kesesuaian kaedah setiap kompaun yang dijalankan dalam kajian ini. Kajian ke atas pengesahan prestasi persampelan pasif menunjukkan bahawa prestasi contoh pasif yang konsisten. Pekali korelasi yang tepat ($r^2 = 0.979$) diperhatikan dalam perbandingan berpasangan antara kaedah pensampelan yang aktif dan pasif, dan pensampelan pasif menunjukkan prestasi yang jauh lebih baik kaedah pensampelan aktif berkenaan dengan pengukuran sisa-sisa udara. Antara ketiga-tiga contoh pasif udara, kain kasa kapas menunjukkan pemendapan tertinggi bagi sebatian yang terikat dengan zarah-- paraquat dan glyphosate (15.56 and 2.49 ng/cm2, masing-masing), manakala sampler PUF menunjukkan tertinggi bagi sebatian- chlorpyrifos wap terikat (48.80 ng/cm2). Dalam udara aktif, sisa-sisa paraquat dan glyphosate dikesan hanya dalam kartrij penapis gentian kuarza (0.52 and 0.10 µg/m3, masing-masing), selain itu, chlorpyrifos dapat dikesan pada kartrij palam PUF (2.54 µg/m3). Data mengenai sisa-sisa udara yang diukur di kawasan padi yang semakin meningkat menunjukkan bahawa di antara ketiga-tiga sebatian ini, glyphosate diukur dalam jumlah yang paling rendah di udara diikuti oleh paraquat dan chlorpyrifos. Walau bagaimanapun, dalam pensampelan sepanjang hari, hampir ada sisa-sisa yang tidak dapat dikesan dalam mana-mana sampel yang terdedah dalam pensampelan pra-event, dan jelas sekali, baki udara tertinggi adalah diukur semasa menyembur pada pensampelan zon pernafasan pengendali semburan, dan seterusnya tahap residu telah menurun secara drastik dalam sesi selepas semburan. Selain itu, dalam sesi persampelan
selepas semburan tahap residu adalah sentiasa tinggi bermula pada 0-4 jam berbanding dengan kedua 4-8 jam acara pensampelan. Tambahan pula, jumlah sisa-sisa menunjukkan ruang (lokasi-tepat) serta variasi bermusim di mana keadaan persekitaran tempatan, sifat-sifat physiochemical sebatian dan teknik penggunaan memainkan peranan yang amat penting pada mendapan racun perosak atmosfera. Dalam perbandingan antara musim padi, jumlah sisa yang diukur dengan kaedah pensampelan yang pasif dan aktif menunjukkan pengesanan yang lebih tinggi pada musim kering (18.83, 8.59 ng/cm² dan 0.76, 0.28 μg/m³ untuk paraquat; 2.82, 1.03 ng/cm² dan 0.28, 0.06 μg/m³ untuk glyphosate; 48.62, 19.71 ng/cm² dan 4.19, 1.54 μg/m³ untuk chlorpyrifos, masing-masing) daripada musim basah (13.68, 4.84 ng/cm² dan 0.56, 0.19 μg/m³ untuk paraquat; 1.62, 0.55 ng/cm² dan 0.13, 0.00 μg/m³ untuk glyphosate; 21.28, 9.36 ng/cm² dan 1.79, 0.54 μg/m³ untuk chlorpyrifos, masing-masing). Walau bagaimanapun, variasi bermusim menunjukkan kesan sisa udara untuk paraquat dan glyphosate yang tidak ketara, tetapi kesan yang ketara untuk chlorpyrifos. Menariknya, kesan bermusim tidak penting untuk paraquat, glyphosate dan chlorpyrifos pada sisa-sisa nafas (109.74, 32.50, 153.50 μg/m³ pada musim basah dan 108.66, 31.73, 186.68 μg/m³ pada musim kering, masing-masing) dalam udara di sekeliling pernafasan pengendalian semburan zon semasa menyembur. Dalam bidang pengendalian pendedahan penilaian yang diekstrapolasi, ke atas kulit (5 hingga 7 dan 15 hingga 30 kali, masing-masing) dan penyedutan yang berpotensi (40 dan 100 kali, masing-masing) dos yang lebih tinggi daripada pengendalian yang dicadangkan oleh pendedahan tahap yang boleh diterima (AOEL) untuk paraquat dan chlorpyrifos, sedangkan, kedua-dua dos yang jauh lebih rendah daripada AOEL yang dicadangkan untuk glyphosate.
ACKNOWLEDGEMENTS

I would like to give thanks to the Almighty Allah for giving me strength and wisdom to complete my study. May His name be glorified and praised.

I would like to express my gratitude to Professor Dr. Dzolkhifli Omar for giving me the opportunity to pursue my study and also for his constructive criticisms, suggestions, encouragement and support provided during the study period and thesis preparation. My sincere appreciation is extended to Professor Dr. Rosli B. Mohamad, Department of Crop Sciences, UPM for his guidance, suggestions and advice during my study. My sincere gratitude also to Dr. Samsuri B. Abd. Wahid, Department of Land Management, UPM for his suggestions throughout the study.

It is my greatest pleasure to acknowledge Ministry of Agriculture (MOA), Malaysia for approving this project (Project no. 05-01-04-SF1100), and subsequent funding for conducting this research.

I wish to express my heartfelt gratitude and appreciation to my wife Dr. Shahanaz Sultana and my daughter Maleeha Muniyat for their endless love, sacrifices, physical and mental support to make this thesis a reality.

I wish to thank Haji Hasan of Malaysian Agricultural Development Institute (MARDI) for helping to introduce me with the local farmers for conducting this study. I would also like to thank Haji Desa, Mr. Zainal and Mr. Zamry for allowing me to use their land and other necessary supports for conducting this research smoothly.
I would like to extend my gratitude to Dr. Ahmad Bin Selamat, Department of Crop Sciences, UPM for his kind technical suggestion for Statistical analysis technique. I wish to express my sincere gratitude to Mr. Jarkasi, Mr. Mohamed. Zaki and Mr. Selvarajan for their technical knowledge and support. Many thanks to Dr Ivy, Ayisha, Dhalia, Arshia, Mizie, Aizat, Hayu for their friendship, support and encouragement. My special thanks also to Norhayu Binte Asib for translating the abstract from English to Bahasa Malaysia.

Last but not the least, I wish to express my deepest gratitude and appreciation to my parents, siblings and family for their love and constant support through out my study.
I certify that an Examination Committee has met on 25/07/2011 to conduct the final examination of Md. Mahbub Morshed on his Ph.D thesis entitled "Airborne Residues of Paraquat, Glyphosate and Chlorpyrifos in Rice Fields of Sungai Besar, Selangor, Malaysia" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree.

Members of the Thesis Examination Committee were as follows:

Kamaruzaman Sijam, PhD
Associate Professor
Department of Plant Protection
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Rita Muhamad Awang, PhD
Professor
Department of Plant Protection
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Hafidzi Mohd. Noor, PhD
Associate Professor
Department of Plant Protection
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Ghulam Hossain Abro, PhD
Professor
Department of Entomology
Sindh Agriculture University
Tandojam, Pakistan
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Dzolkhifli Omar, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Rosli B. Mohamad, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Samsuri B. Abd. Wahid, PhD
Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

HASANAH MOHD. GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 8 September 2011
DECLARATION

I hereby declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or other institutions.

MD. MAHBUB MORSHED

Date: 25 July 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>x</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1

2 LITERATURE REVIEW

2.1 Pesticides 6
 2.1.1 Defining pesticides 6
 2.1.2 Pesticides uses in agriculture 6

2.2 Pesticides in the atmosphere 7
 2.2.1 Pesticides movement into atmosphere 7
 2.2.2 Pesticides removal process in atmosphere 9

2.3 Factors influencing pesticides movement to the atmosphere 11
 2.3.1 Physical and chemical properties of pesticides 11
 2.3.2 Pesticides application methods 13
 2.3.3 Pesticides application rates 16
 2.3.4 Pesticides formulations 16
 2.3.5 Local meteorological conditions 17
 2.3.6 Nature of soil and crop characteristics 18

2.4 Airborne residue measurement techniques 20
 2.4.1 Active air sampling method 20
 2.4.2 Passive air sampling method 25

2.5 General considerations during air sampling design 30
 2.5.1 Sampling objectives 30
 2.5.2 Location and number of sampling points 31
 2.5.3 Time, duration and frequency of sampling events 31

2.6 Pesticides uses in Malaysia 32
 2.6.1 Pesticides use trends over the years 32
 2.6.2 Pesticides uses in the rice growing areas 32

2.7 Pesticides selected for the study 35
 2.7.1 Paraquat 35
 2.7.2 Glyphosate 40
 2.7.3 Chlorpyrifos 45

2.8 Pesticides exposure and human health 51