EFFECTS OF CALCIUM TREATMENT ON DRAGON FRUIT
[Hylocereus polyrhizus (F.A.C. WEBER) BRITTON & ROSE]
QUALITY AND ACTIVITIES OF POLYGALACTURONASE AND
PECTIN METHYLESTERASE

SITI HAJAR CHUNI

FP 2011 8
EFFECTS OF CALCIUM TREATMENT ON DRAGON FRUIT [Hylocereus polyrhizus (F.A.C. WEBER) BRITTON & ROSE] QUALITY AND ACTIVITIES OF POLYGALACTURONASE AND PECTIN METHYLESTERASE

By

SITI HAJAR CHUNI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

December 2010
Dedicated to:

My Father Chuni bin Ahamad
My Mother Azimah binti Alias
My Aunty Azizah binti Alias
My Sister Siti Farhana binti Chuni
My Brother Muiz Hakim bin Chuni
My Younger Brother Shafiq Hakim bin Chuni
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

EFFECTS OF CALCIUM TREATMENT ON DRAGON FRUIT [Hylocereus polyrhizus (F.A.C. WEBER) BRITTON & ROSE] QUALITY AND ACTIVITIES OF POLYGALACTURONASE AND PECTIN METHYLESTERASE

By

SITI HAJAR CHUNI

December 2010

Chair: Associate Professor Dr. Yahya Awang, PhD

Faculty: Faculty of Agriculture

Effects of different concentrations of calcium (Ca) from calcium chloride (CaCl₂) on activities of two cell wall degrading enzymes; polygalacturonase (PG) and pectin methylesterase (PME) and fruit quality of dragon fruit (Hylocereus polyrhizus) were evaluated. Dragon fruit in this study were obtained from a commercial farm in Batang Benar in Nilai, Negeri Sembilan. Before any Ca treatments were given, it was important to establish the optimum temperature and pH for PG and PME enzymes as these were the two very important physical parameters influencing activity of an enzyme. PG and PME were assayed with different pH range of buffer solutions (pH 3.0 – 8.0) and different temperatures (30 – 70 °C) and results obtained were used in further experimentations. The activities of PG and PME were measured on dragon fruit of different maturity indices; index 3, 4 and 5. This study was carried out using a completely randomized design (CRD) with three replications. To determine the effect of Ca on PG and PME activities, different Ca concentrations (0, 2.5, 5 and 7.5
g/L Ca from CaCl₂) were then treated to dragon fruit of two maturity indices (index 3 and 5) and stored for seven days at ± 20 °C. The experiment was conducted in a randomized completely block design (RCBD) with three replications. Effect of varying concentrations of Ca from CaCl₂ (0, 2.5 and 7.5 g/L Ca from CaCl₂) and dipping duration (0, 4, 8 and 12 mins) on PG and PME activities and fruit quality parameters (firmness, color, pH, calcium content, ascorbic acid content, titratable acidity and soluble solids concentration) of fresh-cut dragon fruit after five days of storage at 12 ± 1 °C were also examined. The experiment was carried out using RCBD with three replications.

Results showed that the activity of PG was highest at 41 °C (6.233 nkat/g) and at pH 6.0 (4.818 nkat/g) while PME activity reaches its maximum level at 47.8 °C (60.864 neqv g⁻¹ s⁻¹) and at pH 5.8 (72.782 neqv g⁻¹ s⁻¹). Fruits of varying maturity indices have different activity of PG and PME activities. A very low PG activity was found in unripe *H. polyrhizus* (Index 3), but the activity of the enzymes increased as the fruit ripened (Indices 4 and 5) with their values being 1.26, 2.57 and 3.04 nkat/g respectively. In contrast, PME activity was higher in unripened fruit (Index 3) than fruit with maturity Index 4 and Index 5 being 25.73, 22.57 and 17.19 neqv g⁻¹ s⁻¹, respectively. It is proven that increasing calcium concentrations markedly reduced the activities of PG and PME enzymes in dragon fruit. At 7.5 g/L Ca from CaCl₂, the activities of PG and PME were lowest followed by fruit treated with 5, 2.5 and 0 g/L Ca from CaCl₂. The significant interaction between Ca concentration and duration of dipping showed the effect of Ca on the activity of PG and PME and dependent on duration of exposure to the chemical. Overall, dragon fruit treated with 7.5 g/L Ca from CaCl₂ and eight minutes dipping significantly reduced the activities of PG and
PME enzyme the lowest compared to other treatments. Duration of dipping did not affect fruit color, pH, titratable acidity and ascorbic acid content while soluble solids concentration and calcium content increased at a longer duration of dipping. There was an interaction found between Ca concentration and duration of dipping on firmness. The firmness of fruit slices treated at the highest Ca concentration (7.5 g/L) increased at the beginning of the treatment (2.31 N) but decreased as the duration increased to 8 and 12 mins being 1.91 and 2.18 N respectively. A correlation between parameters measured in this study showed that both PG and PME activities were negatively correlated with the fruit Ca content. The correlation result also showed that fruits with high Ca concentration contained low ascorbic acid content. Understanding on the cell wall degrading enzymes would give us a better opportunity to manipulate their activities, thus allowing us to extend the fruit economic life.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN RAWATAN KALSIUM KE ATAS KUALITI BUAH NAGA [Hylocereus polyrhizus F.A.C. WEBER) BRITTON & ROSE] SERTA AKTIVITI POLIGALAKTURONASE DAN PEKTIN METILESTERASE

Oleh

SITI HAJAR CHUNI

Disember 2010

Pengerusi: Profesor Madya Dr. Yahya Awang, PhD

Fakulti: Fakulti Pertanian

Kesan perbezaan kepekatan kalsium (Ca) daripada kalsium klorida (CaCl$_2$) ke atas aktiviti dua enzim pemecah dinding sel; poligalakturonase (PG) dan pektin metilesterase (PME) dan kualiti buah naga (Hylocereus polyrhizus) dinilai. Buah naga yang digunakan di dalam kajian ini diperoleh daripada ladang komersil di Batang Benar di Nilai, Negeri Sembilan. Adalah penting untuk menstabikan suhu dan pH optimum bagi enzim PG dan PME sebelum sebarang rawatan Ca diberikan kerana dua faktor ini adalah parameter fizikal yang sangat penting dalam mempengaruhi aktiviti enzim. PG dan PME telah diasai dengan larutan penimbal yang mempunyai julat pH yang berbeza (pH 3.0 – 8.0) dan julat suhu yang berbeza (30 – 70 °C). Keputusan yang diperoleh digunakan di dalam eksperimen yang seterusnya. Aktiviti PG dan PME di dalam buah naga yang berbeza indeks kematangan; Indeks 3, 4 dan 5 telah dikaji. Kajian dijalankan menggunakan rekabentuk rawak lengkap dengan tiga replikasi. Untuk mengkaji kesan Ca ke atas

vi
aktiviti PG dan PME, kepekatan Ca yang berbeza (0, 2.5, 5 dan 7.5 g/L Ca daripada CaCl\(_2\)) telah diberikan kepada buah naga yang berbeza indeks kematangan (Indeks 3 dan 5) dan buah disimpan selama tujuh hari pada ± 20 °C. Kajian dijalankan menggunakan rekabentuk blok rawak lengkap dengan tiga replikasi. Kesaran kepekatan Ca yang berbeza (0, 2.5 dan 7.5 g/L Ca daripada CaCl\(_2\)) dan masa rendaman yang berbeza (0, 4, 8 dan 12 minit) ke atas aktiviti PG, PME dan beberapa parameter kualiti buah (kekerasan buah, warna, pH, kandungan kalsium, kandungan asid askorbik dan kepekatan pepejal larut) ke atas buah naga yang telah dipotong dan disimpan pada 12 ± 1 °C selama lima hari turut dikaji. Kajian dijalankan menggunakan rekabentuk blok rawak lengkap dengan tiga replikasi.

Keputusan kajian menunjukkan aktiviti PG mencapai keadaan optimum pada suhu 41 °C (6.233 nkat/g) dan pH 6.0 (4.818 nkat/g) manakala aktiviti PME mencapai kadar optimum pada 47.8 °C (60.864 neqv g\(^{-1}\) s\(^{-1}\)) dan pH 5.8 (72.782 neqv g\(^{-1}\) s\(^{-1}\)). Buah yang berbeza indeks kematangan mempunyai kadar aktiviti enzim pemecah dinding sel yang berbeza. PG dengan aktiviti yang rendah telah dijumpai di dalam buah naga yang kurang matang (Indeks 3) dan apabila indeks kematangan mula meningkat (Indeks 4 dan 5), terdapat kadar peningkatan yang agak ketara pada aktiviti PG dengan nilai aktiviti masing-masing adalah 1.26, 2.57 dan 3.04 nkat/g. Berbeza dengan PG, aktiviti PME adalah lebih tinggi pada buah yang kurang matang (Indeks 3) berbanding dengan buah yang lebih matang dengan nilai aktiviti masing-masing 25.73, 22.57 dan 17.19 neqv g\(^{-1}\) s\(^{-1}\). Dengan peningkatan kepekatan Ca daripada CaCl\(_2\) telah terbukti aktiviti PG dan PME telah berjaya diturunkan. Interaksi di antara kepekatan Ca dengan kadar masa rendaman menunjukkan kesan yang ketara pada aktiviti PG dan PME. Buah naga yang dirawat dengan 7.5 g/L Ca
daripada CaCl₂ dan 8 minit masa rendaman memberikan kadar penurunan yang paling tinggi pada aktiviti PG dan PME. Bagi kualiti buah naga pula, kepekatan kalsium dan kadar masa rendaman tidak memberikan kesan kepada warna, pH, keasidan titratan dan kandungan asid askorbik manakala kandungan pepejal larut dan kandungan kalsium meningkat apabila kadar masa rendaman ditingkatkan. Terdapat interaksi di antara kepekatan Ca dan kadar masa rendaman terhadap kepejal buah. Kepejal buah yang dirawat pada kepekatan Ca tertinggi (7.5 g/L) meningkat pada awal rawatan (2.31 N) tetapi kemudian menurun apabila kadar masa rendaman meningkat dari 8 min kepada 12 min dengan nilai kepejal buah masing-masing 1.91 dan 2.18 N. Korelasi di antara parameter yang diuji di dalam kajian ini menunjukkan kedua-dua aktiviti PG dan PME adalah berkorelasi negatif dengan kandungan Ca buah. Keputusan analisis korelasi juga menunjukkan buah yang mengandungi kepekatan Ca yang tinggi mengandungi kandungan asid askorbik yang rendah. Pemahaman mengenai enzim pengurai dinding sel ini membolehkan kita mengawal tindakan enzim-enzim ini dan seterusnya memanjangkan jangka hayat ekonomi buah.
I would like to express my gratitude and acknowledge my committee chairperson and advisor, Associate Professor Dr. Yahya Awang for his kind advice, assistance and encouragement to me in conducting this study and as well as completion of this thesis. I would also like to extend my thanks to my other supervisory committee member, Associate Professor Dr. Mahmud Tengku Muda Mohamed for his guidance, constructive criticism and comments in carrying out this study.

The completion of this thesis was greatly added by the support and friendship of several people in the Crop Science Department, UPM. Mr. Muhammad Saizam Mat Jusoff, Mr. Mohd Azlan Abd. Ghani, Miss Aina Mardhiah Nordin and Miss Fitrah Salimah Saari, my laboratory mates for making my research and our lab an enjoyable workplace. I was lucky to have the unconditional friendship from all of you. Special appreciation also goes to office staff, faculty and laboratory personnel especially Mr. Mazlan Bangi (Physiology Laboratory), Tuan Haji Mohd. Khoiri Kandar (Atomic Absorption Spectroscopy Laboratory), Mr. Azahar Othman (Pos-Harvest Laboratory), Mr. Daud Mustam and Mr. Muhammad Mat Daud who helped me in many ways during my research project.

Last but not least, I wish to express my deepest thanks and appreciation to my beloved parents; Mr. Chuni Ahamad and Mrs. Azimah Alias, my siblings; Siti Farhana, Muiz Hakim and Shafiq Hakim and my aunty; Miss Azizah Alias who has
given me faith, prayer, support and unconditional love whenever I need it. Words can never express my warmest gratitude to all of you. Finally, my thanks to any person who has helped me in one way or another towards this degree. May ALLAH will reciprocate your kindness. Above all, ALLAH SWT the Most Gracious and Most Merciful who gave me the strength to complete my study and made all things went well.
I certify that a Thesis Examination Committee has met on 20 December 2010 to conduct the final examination of Siti Hajar binti Chuni on her thesis entitled “Effects of Calcium Treatment on Dragon Fruit [Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose] Quality and Activities of Polygalacturonase and Pectin Methylesterase” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Saleh Kadzimin, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Siti Hajar Ahmad, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Siti Aishah Hassan, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Zainon Mohd. Ali, PhD
Professor
Department of Bioscience and Biotechnology
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Malaysia
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 26 July 2011
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the supervisory Committee were as follows:

Yahya Awang, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Mahmud Tengku Muda Mohamed, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or any other institution.

SITI HAJAR BINTI CHUNI

Date: 20 December 2010
TABLE OF CONTENTS

DEDICATIONS ii
ABSTRACT iii
ABSTRAK vi
ACKNOWLEDGEMENTS ix
APPROVAL xi
DECLARATION xiii
LIST OF TABLES xvi
LIST OF FIGURES xviii
LIST OF ABBREVIATIONS xxii

CHAPTER

1. INTRODUCTION 1

2. LITERATURE REVIEW 5
 2.1 Dragon Fruit (Hylocereus polyrhizus)
 2.1.1 Cultivation of dragon fruit in the world 6
 2.1.2 Cultivation of dragon fruit in Malaysia 8
 2.1.3 Botany in general 9
 2.1.4 Uses and nutrition facts of dragon fruit 10
 2.2 Fruit Softening 12
 2.2.1 Cell wall structure and softening 13
 2.2.2 Role of cell wall degrading enzymes in fruit softening 15
 2.3 Factors Affecting Enzymes Activities 16
 2.4 Fruit Quality 18
 2.4.1 Fruit quality attributes 18
 2.5 Calcium and Fruit Quality 27
 2.6 Effect of Calcium on Enzymes Activities 28
 2.7 Research on Dragon Fruit in Malaysia 30

3. ASSAY OF POLYGALACTURONASE (PG) AND PECTIN METHYLESTERASE (PME) OF WHOLE DRAGON FRUIT 33
 3.1 Introduction 33
 3.2 Materials and Methods 34
 3.2.1 Plant material 34
 3.2.2 Enzyme extraction 36
 3.2.3 Assay for PG and PME 37
 3.2.4 Experimental design and statistical analysis 39
 3.3 Results and Discussion 39
 3.3.1 Optimization of assay of PG 39
 3.3.2 Optimization of assay of PME 41
 3.4 Conclusion 43
4. ACTIVITIES OF POLYGALACTURONASE (PG) AND PECTIN METHYLESTERASE (PME) IN WHOLE DRAGON FRUIT (*Hylocereus polyrhizus*) OF DIFFERENT MATURITY INDICES AND TREATED BY POST-HARVEST CALCIUM

4.1 Exp. 1: Quantification of PG and PME Activities in Red Flesh Dragon Fruit of Different Maturity Indices

4.1.1 Introduction

4.1.2 Materials and methods

4.1.3 Experimental design and statistical analysis

4.1.4 Results and discussion

4.1.5 Conclusion

4.2 Exp. 2: Activities of PG and PME of Dragon Fruit (*Hylocereus polyrhizus*) as Affected by Post-harvest Calcium Treatment

4.2.1 Introduction

4.2.2 Materials and methods

4.2.3 Experimental design and statistical analysis

4.2.4 Results and discussion

4.2.5 Conclusion

5. EFFECTS OF POST-HARVEST CALCIUM TREATMENT AND DURATION OF DIPPING ON QUALITY AND CELL WALL DEGRADING ENZYMES OF FRESH CUT RED FLESH DRAGON FRUIT

5.1 Introduction

5.2 Materials and Methods

5.2.1 Plant material and post-harvest calcium treatment

5.2.2 Enzyme extraction

5.2.3 Assay for PG and PME

5.2.4 Fruit analysis

5.2.5 Experimental design and statistical analysis

5.3 Results and Discussion

5.3.1 PG and PME activities

5.3.2 Quality evaluation of dragon fruit

5.4 Conclusion

6. SUMMARY, CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH

REFERENCES

APPENDICES

BIODATA OF STUDENT

LIST OF PUBLICATIONS