PATHOTYPES OF PSEUDOPERONOSPORA CUBENSIS (BERK. ET CURT.) ROSTOW, CAUSAL AGENT OF DOWNY MILDEW AND INDUCED DEFENSE RESPONSES IN THE HOST

MANSOUR SALATI

FP 2011 3
PATHOTYPES OF *PSEUDOPERONOSPORA CUBENSIS* (BERK. ET CURT.) ROSTOW, CAUSAL AGENT OF DOWNY MILDEW AND INDUCED DEFENSE RESPONSES IN THE HOST

By

MANSOUR SALATI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

March 2011
DEDICATION

WITH LOVE AND APPRECIATION TO:

My Beloved Wife: Maryam Hosseini

My Son: Amir Hossein
PATHOTYPES OF *PSEUDOPERONOSPORA CUBENSIS* (BERK. ET CURT.) ROSTOW, CAUSAL AGENT OF DOWNY MILDEW AND INDUCED DEFENSE RESPONSES IN THE HOST

By

MANSOUR SALATI

March 2011

Chairman : Wong Mui Yun, PhD
Faculty : Agriculture

There is abundant literature on aspects of molecular biology which tended to focus on taxonomic and phylogenetic studies in Oomycete. However, information on local intraspecific populations or pathotype levels of *Pseudoperonospora cubensis*, the causal agent of downy mildew of cucurbit, is lacking. Host specificity identification is an important aspect of downy mildew disease management, especially for plant breeding purposes and in studies on population biology. Surveys were conducted at five states of West Malaysia to study *P. cubensis* pathotypes during 2008 and 2009. The sampling sites included farms where cucurbits, such as *Cucumis sativus*, *Cucumis melo*, *Luffa cylindrica* and *Trichosanthes cucumerina* were grown. Germination test confirmed that only 13 of 29 isolates have the ability to sporulate, and were used for further studies.
The results of the present investigation using leaf disc assay showed that there was high variability in *P. cubensis* pathotypes in West Malaysia (12 pathotypes from 13 isolates in five states). The majority of the isolates obtained in this study were categorized in medium and high pathogenicity groupings, and this illustrates the potential of this pathogen in invading cucurbit fields in tropical regions. Morphological characterization indicated that there is no relationship between pathotype and the size and shape of sporangia. Molecular characterization of the pathotypes based on ITS region revealed that the percent of homology among the 13 isolates and similar sequences from GenBank was high (99%). Phylogenetic analysis of the 13 isolates based on neighbor-joining method on ITS regions revealed five groupings. The highest variation in nucleotide sequence was found in the ITS2 region followed by ITS1, and 5.8S region served as a conserve region with no variation in nucleotide sequence. The phylogram from 13 sequences of COX-II region based on neighbor-joining method categorized isolates into three groupings. The results indicated that both selected regions were inadequate to be used for differentiation of *P. cubensis* pathotypes. The newly designed species-specific primers on ITS and COX-II regions successfully amplified (528 and 253 bp) rDNA and mitochondria of *P. cubensis*, respectively. However, no PCR products were obtained for the new designed sets when the primers were tested against different isolates of fungi as negative control including *Fusarium solani*, *Phomopsis langicola*, *Lasiodiplodia theobromae*, *Fusarium oxysporum*, *Pythium sp.*, *Phytophthora sp.*, *Pyricularia oryzae*, *Aspergillus flavus* and *Aspergillus niger*.

A higher activity on chitinase and glucanase enzymes was detected on watermelon than cucumber plants at 12 hours after treatment, only with chitosan as an inducer of plant
resistance. The results of nitric oxide (NO) and chitinase and glucanase enzymes detection in competitive study showed that increased amount of NO was detected in plants treated with chitosan. Chitinase and glucanase enzymes were also produced in chitosan treated plants with a peak at 12 hours after inoculation with the pathogen. The peak of NO generation in chitosan treatment was 4 hours earlier than the peak of chitinase and glucanase detection. Expression of chitinase and glucanase genes was marked at 4 hours before maximum detection of chitinase and glucanase enzymes, respectively. The NOA expression was conducted based on amplification of NOA associated protein which was designed based on tobacco and potato. Disease assessment confirmed that production of NO in the NO donor treatment (chitosan) plays a critical role in mediating the defense responses in cucumber against downy mildew disease with 58.1% protection. Disruption in NO production would have negative effects on chitinase and glucanase enzymes levels and increase disease incidence up to 60.6% and 71.1% for LNAME and CPTIO treatment, respectively in comparison with control (96.6%). These results demonstrated the there is a relationship between chitinase and glucanase enzymes detection and NO emission in cucumber. The transcript of NOA led to production of NO which suppressed disease incidence. This provides additional evidence for over expression of NOA in cucumber for future study.
PATOTIP *PSEUDOPERONOSPORA CUBENSIS* (BERK. ET CURT.) ROSTOW, PENYEBAB PENYAKIT KULAPUK DOWNY DAN RESPON KETAHANAN TERANGSANG PADA PERUMAH

Oleh

MANSOUR SALATI

Mac 2011

Pengerusi : Wong Mui Yun, PhD
Fakulti : Pertanian

Hasil yang diperolehi daripada ujian cakera daun menunjukkan bahawa terdapat perbezaan yang tinggi dalam patotip *P. cubensis* di Malaysia Barat (12 patotip dari 13 isolat di lima negeri). Sebahagian besar isolat yang diperolehi dalam kajian ini dikategorikan dalam kumpulan kepatogenan sederhana dan tinggi, dan ini menggambarkan potensi patogen ini dalam pencerobohan kawasan penanaman ‘cucurbit’ di kawasan tropika. Ciri-ciri morfologi menunjukkan bahawa tidak ada hubungan antara patotip dengan saiz dan bentuk sporangium.

vii
Satu aktiviti yang lebih tinggi terhadap enzim kitinase dan glukanase telah dikesan pada tanaman tembikai berbanding dengan tanaman timun, 12 jam selepas rawatan dengan ‘chitosan’ sahaja sebagai agen pencetus ketahanan tanaman. Keputusan kajian persaingan bagi mengesan enzim-enzim nitrik oksida (NO), kitinase dan glukanase menunjukkan bahawa peningkatan jumlah NO dikesan pada tanaman yang dirawat dengan ‘chitosan’. Enzim-enzim kitinase dan glukanase juga dihasilkan dalam tanaman yang dirawat dengan ‘chitosan’, di mana ia mencapai puncak pada 12 jam selepas penginokulatan patogen dijalankan. Puncak bagi generasi NO dengan rawatan ‘chitosan’ adalah 4 jam lebih awal daripada puncak pengesanan kitinase dan glukanase.

Pengekspresan gen kitinase dan glukanase telah ditandakan 4 jam sebelum pengesanan maksimum enzim kitinase dan glukanase. Pengekspresan NOA dilakukan berdasarkan amplifikasi protein yang berkaitan dengan NOA yang direka berdasarkan tembakau dan ubi kentang. Penilaian penyakit menegaskan bahawa pengeluaran NO dalam rawatan penderma NO (‘chitosan’) memainkan peranan penting dalam pengantaraan respon pertahanan dalam timun terhadap penyakit kulapuk downy dengan perlindungan sebanyak 58.1%. Gangguan dalam pengeluaran NO mungkin mempunyai kesan negatif terhadap tahap enzim kitinase dan glukanase dan meningkatkan kejadian penyakit sehingga 60.6% dan 71.1% untuk rawatan LNAME dan CPTIO masing-masing berbanding dengan kawalan (96.6%). Keputusan ini menunjukkan wujudnya hubungan antara pengesanan enzim kitinase dan glukanase dan pembebasan NO dalam timun.

Transkrip NOA menyebabkan pengeluaran NO yang mengurangkan kejadian penyakit. Hasil kajian ini memberikan bukti tambahan kepada pengekspresan lebih NOA pada tanaman timun untuk kajian di masa depan.
ACKNOWLEDGEMENTS

Most of all, all praises and my endless thanks be to God Almighty most beneficent and merciful for making it possible for me to complete this investigation.

I would like to express my deep gratefulness to my supervisor Dr. Wong Mui Yun for her generous guidance, patience, help, constructive comments, invaluable advices and suggestions throughout the completion of this thesis. My sincere appreciation is also extended to the committee members, Professor Dr. Sariah Meon and Associate Professor Dr. Tan Yee How, for their guidance and suggestions throughout my research.

I am greatly thankful to the Universiti Putra Malaysia, for pursuing my Ph.D program in Malaysia. I would like to express my profound gratitude and honest thanks to the staff members of Plant Pathology and Microbiology Laboratories of Plant Protection Department, Mr. Nazri for his help during sample collection, Mr. Johari, Mr. Shamsuddin, Mr. Zawawi and Mrs. Asmalina for always being so willing to render assistance throughout the course of the study.

I wish to express my sincere appreciation to all those who are not mentioned here that helped me to ensure the completion of my research.

Finally, I am especially grateful to my dear wife for her love, moral support and patience of our son during the course of my study.
I certify that a Thesis Examination Committee has met on 29th March 2011 to conduct the final examination of Mansour Salati on his thesis entitled “Pathotypes of \textit{Pseudoperonospora cubensis} (Berk. et Curt.) Rostow, Causal Agent of Downy Mildew and Induced Defense Responses in the Host” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

\textbf{Rita Muhamad Awang, PhD}
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

\textbf{Zainal Abidin Mior Ahmad, PhD}
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

\textbf{Jugah Kadir, PhD}
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

\textbf{Smart Chistine Durbahn, PhD}
Associate Professor
Department of Plant Pathology and Plant-Microbe Biology
Cornell Universiti
United State of America
(External Examiner)

\hline

\textbf{BUJANG KIM HUAT, PhD}
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

x
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Wong Mui Yun, PhD
Senior Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Sariah Meon, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Tan Yee How, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

MANSOUR SALATI

Date: 29 March 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1. **GENERAL INTRODUCTION**
 1.1 Introduction
 1.2 Problem Statement
 1.3 Hypothesis
 1.4 Objectives
 1.5 Scope of Study
 1.6 Layout of the Thesis

2. **LITERATURE REVIEW**
 2.1 Cucurbits
 2.2 Economic Importance of Downy Mildew
 2.3 Nomenclature and Taxonomy of *Pseudoperonospora cubensis*
 2.4 Morphology of *Pseudoperonospora cubensis*
 2.5 World Distribution of *Pseudoperonospora cubensis*
 2.6 Disease Cycle
 2.7 Pathotypes in *Pseudoperonospora cubensis*
 2.8 Molecular Detection and Phylogeny of *Pseudoperonospora cubensis*
 2.9 Plant Defense Mechanisms
 2.10 Resistance Gene to Downy Mildew
 2.10.1 Role of NO in Plant Defense Response
 2.10.2 Source of NO in Plants
 2.11 Nitric Oxide Indicator

xiii
2.11.1 Importance of PR-Proteins 26
2.11.2 Glucanase 31
2.12 Chitosan 31
2.12.1 Characterization of Chitosan 34
2.12.2 Plant Immunity Regulation Mechanism of Chitosan 36
2.13 Summary 40

3 ISOLATION AND IDENTIFICATION OF PATHOTYPES OF PSEUDOPERONOSPORA CUBENSIS FROM LOCATIONS IN WEST MALAYSIA 42
3.1 Introduction 42
3.2 Objective of the Study 43
3.3 Materials and Methods 44
 3.3.1 Collection of Pseudoperonospora cubensis Isolates 44
 3.3.2 Inoculum Preparation 45
 3.3.3 Plant Materials 46
 3.3.4 Reaction of Differential Cucurbit Genotypes to P. cubensis Isolates 48
 3.3.5 Determination of Sporangial Germination and Measurement of Sporangia and Sporangiophores 51
 3.3.6 Statistical Analyses 52
3.4 Results and Discussion 52
 3.4.1 Reaction of Differential Cucurbit Genotypes to P. cubensis Isolates 52
 3.4.2 Sporangia Germination and Measurement of Sporangia and Sporangiophores 56
3.5 Conclusions 61

4 PHYLOGENETIC ANALYSES OF PSEUDOPERONOSPORA CUBENSIS PATHOTYPES USING ITS AND COX-II REGIONS 62
4.1 Introduction 62
4.2 Objective of the Study 64
4.3 Materials and Methods 64
 4.3.1 Pathogen Isolates 64
 4.3.2 DNA Extraction 65
 4.3.3 Amplification of Target DNA 66
 4.3.4 Agarose Gel Electrophoresis 67
 4.3.5 Phylogenetic Analysis 68