ANATOMICAL STRUCTURE AND PHYSICAL PROPERTIES OF
NEWLY INTRODUCED HEVEA SPECIES

By

NORUL IZANI BINTI MD ALLWI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in
Fulfilment of the Requirements for the Degree of Master of Science

June 2006
DEDICATION

Dedicated to my beloved father, Md Allwi Hassan; my loving mum, Norunnaha Md Nor; my brothers, Khairil Anuar and Khairul Amru; my fiancé, Fadzli Asyarihi Ramlee and all my loving family....................

Norul Izani
Understanding wood properties and behavior is important to evaluate the performance of producing high quality end products. A study was conducted to determine the anatomical and physical properties of new Hevea species viz Hevea pauciflora, Hevea guianensis, Hevea spruceana, Hevea benthamiana compared to the executing Hevea brasiliensis clone RRIM 912. This study was conducted in order to determine its suitability and potential usage of these woods. Five trees of 15 years old from each species were selected and felled from Rubber Research Institute of Malaysia (RRIM) Plantation at Bandar Penawar, Johor. Each tree was divided into three different portions along the height namely, bottom, middle and upper parts, and two radial samples namely outer and inner parts were chosen for comparative study on the anatomical structure and physical properties. Physical testing were conducted

Clone *RRIM 912* exhibited the longest fibre compared to other species with 1214 µm, followed by *Hevea benthamiana* (1200 µm), *Hevea pauciflora* (1189 µm), *Hevea spruceana* (1158 µm) and *Hevea guianensis* (1145 µm). Longer fibre was observed in outer wood compared to inner wood. The fibre length of these rubberwood species was increasing from bottom to the upper part of the tree. *Hevea guianensis* has the largest fibre diameter (24.9 µm) and lumen diameter (12.5 µm). Along the radial zones, there is no significant difference in lumen diameter either in the inner wood or in the outer wood. The cell wall thickness of *Hevea pauciflora* recorded the lowest with 6.08 µm, compared to the highest with 6.51 µm (*Hevea spruceana*). Most of these *Hevea* species showed decreasing pattern from outer region to inner region. Vessel diameter was found to be higher in *RRIM 912* clones with 153.3 µm. The results indicated that the mean vessel diameter is larger at outer region compared to inner region. The mean vessel frequency was higher in *Hevea guianensis* with 2.61 per sq. mm. The increase in the amount of vessel will decrease the specific gravity and thus the strength of the wood. Wood from *RRIM 912* clones showed the highest proportion of rays with 33.3%, compared to the lowest with 29.8% (*Hevea spruceana*).

Hevea spruceana had the highest initial moisture content compared to other species. Basically, bottom part possessed the highest moisture content followed by middle and
upper part, respectively. The highest specific gravity was obtained from RRIM 912 clones with 0.60, while the lowest was 0.57 (Hevea guianensis). Generally, species with a high specific gravity have corresponding high strength value. The strength properties of timber increase with decreasing moisture content. Hevea guianensis exhibited the highest percentage of shrinkages for all directions (tangential, radial and longitudinal). Overall, from the results it showed that the tangential shrinkage recorded the greatest value followed by radial shrinkage and longitudinal shrinkage.

Overall, the properties of clone RRIM 912 was found to be comparatively better because of higher strength due to longer fibre length, thicker cell walls and higher specific gravity than other Hevea species. Therefore, this species can be inferred as a potential general utility timber.
gentian untuk spesis kayu getah ini didapati meningkat dari bahagian bawah pokok ke bahagian tengah dan seterusnya ke bahagian atas pokok. *Hevea guianensis* memberi nilai terbesar untuk garis pusat gentian dan diameter lumen iaitu masing-masing 24.9 µm dan 12.5 µm. Untuk diameter lumen, kedudukan sampel tidak menunjukkan sebarang perbezaan beerti samada untuk bahagian dalam atau luar kayu. *Hevea pauciflora* memberi nilai ketebalan dinding sel yang paling rendah dengan 6.08 µm, berbanding nilai yang paling tinggi iaitu 6.51 µm (*Hevea spruceana*). Sebahagian besar spesis kayu getah ini menunjukkan nilai ketebalan dinding sel yang semakin rendah dari bahagian luar ke bahagian dalam kayu. Klon RRIM 912 didapati memberi nilai diameter vessel yang paling besar iaitu 153.3 µm. Daripada ujikaji, jelas didapati bahawa min terbesar diameter vessel ialah pada bahagian luar kayu berbanding bahagian dalam kayu. Nilai tertinggi untuk frekuensi vessel ialah direkod pada *Hevea guianensis* dengan 2.61 bagi setiap mm persegi. Penambahan jumlah vessel didapati akan menurunkan nilai graviti spesifik dan seterusnya mengurangkan kekuatan kayu. Kayu dari klon RRIM 912 menunjukkan nilai peratusan taburan ruji yang terbesar dengan 33.3%, berbanding peratusan terendah iaitu 29.8% (*Hevea spruceana*).

Untuk ujian fizikal, *Hevea spruceana* memberi nilai kandungan lembapan awal yang tinggi berbanding spesis kayu getah yang lain. Secara asas, kandungan lembapan yang plaing tinggi dicatatkan di bahagian bawah pokok, diikuti bahagian tengah dan seterusnya bahagian atas pokok. Min graviti spesifik tertinggi didapati direkod pada klon RRIM 912 dengan 0.60, manakala min terendah iaitu 0.57 (*Hevea guianensis*). Secara amnya, spesis dengan nilai graviti spesifik tertinggi mempunyai kaitan dengan
nilai kekuatan kayu yang tinggi. Kekuatan kayu bagi sesuatu balak bertambah
dengan pengurangan dalam kandungan lembapan. *Hevea guianensis* menunjukkan
nilai peratusan pengecutan yang tertinggi pada semua arah (tangen, radial dan
memanjang). Secara keseluruhannya, kajian menunjukkan pengecutan pada arah
tangen merekodkan nilai peratusan yang tertinggi diikuti pengecutan radial dan
seterusnya pengecutan pada arah memanjang.

Daripada keputusan yang diperoleh, ciri-ciri pada klon *RRIM 912* menunjukkan nilai
yang lebih baik berdasarkan sifat kekuatan kayu tersebut yang dipengaruhi oleh
panjang gentian, ketebalan dinding sel dan nilai graviti spesifik yang tinggi
berbanding spesis kayu getah yang lain. Oleh itu, boleh disimpulkan bahawa klon
RRIM 912 dapat memberi potensi yang tinggi untuk bekalan kayu balak pada masa
depan.
ACKNOWLEDGEMENTS

First and foremost, I would like to express my highest gratitude to Allah the Al-Mighty for His blessing in allowing this thesis to be completed on time.

I would like to express my gratitude of thanks and deepest appreciation to my supervisor, Prof. Dr. Mohd Hamami Sahri, and the committee members, namely Associate Prof. Zaidon Ashaari, Associate Prof. Mohd Zin Jusoh for their valuable guidance, advice, critical comments, unending patience and help rendered throughout the progress of this project.

Special thanks are also due to my one of the early committee, Dr Wong Ee Ding for the guidance and great contribution towards successful completion of this project. Many thanks also to the Senior Research Officer of Lembaga Getah Malaysia (LGM), Dr. Nasharudin for supplying the research materials and great contribution towards successful completion of this project. I would like also thanks to the staff of Forest Research Institute Malaysia (FRIM) for the full cooperation given during completion of the project.
The appreciation is extended to the Dean of Faculty of Forestry, Universiti Putra Malaysia, Prof. Dr. Mohd Hamami Sahri, for his permission to utilize the facilities available. Sincere thanks to field assistants Mr. Abd. Rodzak Musa and Mr. Jalal Aman for their contribution in preparation of the samples and to laboratory staff of the Faculty of Forestry, University Putra Malaysia, especially to Mr. Rahmat Ismail, Mrs. Halimah Husin and Ms. Siti Fazelin Mohammed who directly assisted in completing this study. Grateful acknowledgements are also due to the Dean of Faculty of Agricultural Sciences and Food, Universiti Putra Malaysia Bintulu Campus, Professor Dato’ Dr. Nik Muhammad Abd. Majid for support me during my study.

Special thanks to my family, my beloved father and mother, for their constant encouragement and support. A very special note of gratitude to Mr. Fadzli Asyarihi Ramlee and Ms. Norhafizah Ab. Wahab for their ideas, encouragement, support and great contribution towards making this endeavor successful. Thanks also to all my friends for their help and inspiration.
I certify that an Examination Committee met on 5 JUNE 2006 to conduct the final examination of Norul Izani Binti Md Allwi on her Master of Science thesis entitled “Anatomical Structure and Physical Properties of Newly Introduced Hevea Species” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

H’ng Paik San, PhD
Faculty of Forestry
Universiti Putra Malaysia
(Chairman)

Fauzi Febrianto, PhD
Faculty of Forestry
Universiti Putra Malaysia
(Member)

Jegatheswaran a/l Ratnasingam, PhD
Faculty of Forestry
Universiti Putra Malaysia
(Member)

Rokiah Binti Hashim, PhD
Associate Professor
School of Industrial Technology
Universiti Sains Malaysia
(Independent Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Mohd. Hamami Bin Sahri, PhD
Professor
Faculty of Forestry
Universiti Putra Malaysia
(Chairman)

Zaidon Bin Ashaari, PhD
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Member)

Mohd Zin Bin Jusoh
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor /Dean
School of Graduate School
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

NORUL IZANI MD ALLWI

Date: 3 JULY 2006
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION

Objective 6

II LITERATURE REVIEW

The History of Rubber Tree 7

Botany of *Hevea* 8

Species of *Hevea* 10

Hevea brasiliensis 10

Hevea benthamiana 11

Hevea guianensis 12

Hevea spruceana 13

Hevea pauciflora 13

Other Clones of *Hevea brasiliensis* 15

RRIM 900 Series 16

RRIM 2000 Series 16

Prang Besar (PB) Clones 17

Availability of Rubberwood Resources 17

The Characteristics of Rubberwood 24

General Characteristics 24

Fibre Morphological Characteristics 25

Strength Properties 26

Chemical Compositions 27

Anatomical Properties of Wood 28

Sapwood and Heartwood 29

Fibres 30

Vessels 31
Parenchyma 32
Rays 33
Physical Properties 34
Specific Gravity 35
Moisture Content 37
Shrinkage and Swelling 38
Utilization of Rubberwood 40
Sawn Timber 42
Furniture Components 43
Medium Density of Fibreboard (MDF) 44
Particleboards 45
Glue Lamination 45
Moulding, Parquetry, Strip Flooring and Small Items 46
Other Uses 46

III MATERIALS AND METHODS 48
Collection of Samples 49
Anatomical Properties Study 51
Thin Sectioning 51
Staining and Dehydration Process 52
Mounting 54
Maceration Process 55
Physical Properties 56
Moisture Content 57
Specific Gravity 57
Shrinkage (Radial, Tangential, Longitudinal) 58
Statistical Analysis 58

IV RESULTS AND DISCUSSION 60
Anatomical Properties of Wood 60
Fibre Morphology 64
Fibre Length 64
Fibre Diameter 69
Lumen Diameter 71
Cell Wall Thickness 73
Vessel Diameter 76
Vessel Frequency 78
Percentage of Fibres 81
Percentage of Rays 83
Physical Properties 86
Moisture Content 89
Specific Gravity 93
Shrinkage 98
Comparison of Anatomical and Physical Properties of Five Hevea Species 107

V CONCLUSIONS AND RECOMMENDATIONS 110
Conclusions 110
Recommendations 112

REFERENCES 113
APPENDICES 124
BIODATA OF THE AUTHOR 138