UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF FLORAL EXPRESSED SEQUENCE TAG RESOURCE FROM AND CHARACTERIZATION OF FRAGRANCE-RELATED GENE TRANSCRIPTS IN VANDA MIMI PALMER

TEH SEOW LING

FBSB 2011 8
DEVELOPMENT OF FLORAL EXPRESSED SEQUENCE TAG RESOURCE FROM AND CHARACTERIZATION OF FRAGRANCE-RELATED GENE TRANSCRIPTS IN VANDA MIMI PALMER

By

TEH SEOW LING

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in fulfilment of the Requirement for the Degree of Master of Science

August 2011
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

DEVELOPMENT OF FLORAL EXPRESSED SEQUENCE TAG RESOURCE FROM AND CHARACTERIZATION OF FRAGRANCE-RELATED GENE TRANSCRIPTS IN VANDA MIMI PALMER

By

TEH SEOW LING

August 2011

Chairman: Janna Ong Abdullah, PhD

Faculty: Biotechnology and Biomolecular Sciences

Vanda Mimi Palmer (VMP) is a highly sought after fragrant-orchid hybrid in Malaysia. It is economically important in cosmetic and beauty industries and is also a famous potted ornamental plant. To date, no work corresponding to fragrance-related genes of vandaceous orchids has been reported and very limited molecular information on fragrance from other plants despite extensive analyses of floral fragrance or volatiles been studied. In fact, the biosynthesis pathways of flower fragrance are still incomplete. The aims of this study were to develop a floral expressed sequence tags (EST) resource, as well as to identify and characterize potential fragrance-related transcripts in this orchid hybrid. A previously constructed floral cDNA library of VMP representing transcripts of fragrance-associated genes and floral developmental genes was used to generate 2,132 ESTs. Clustering, annotation and assembling of the ESTs identified 1,196 unigenes which defined 966 singletons and 230 contigs. The VMP dbEST were functionally classified by Gene Ontology (GO) into three groups: Molecular Functions (51.2%), Cellular Component (16.4%) and Biological Processes
(24.6%) while the remaining 7.8% showed no hits with GO identifier. A total of 112 EST-SSR (9.4%) was mined. Five fragrance-related transcripts were selected for full-length isolation and expression analysis using real-time quantitative RT-PCR. They were acetyl-CoA acetyltransferase (VMPACA), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (VMPHMGR), 1-deoxy-D-xylulose 5-phosphate synthase (VMPDXPS), linalool synthase (VMPLis) and lipoxygenase (VMPLox). Those transcripts were developmentally regulated. Three of them were highly expressed in full-bloom stage, and sepals and petals were found to be the tissues with the highest expression levels. Full-length cDNA have been obtained for two of the fragrance-related transcripts (VMPACA and VMPHMGR). Cloning and over-expression of three of the full length cDNAs [VMPACA, VMPHMGR, and a sesquiterpene synthase (VMPSTS) isolated from a previous study] were performed in Escherichia coli BL21(DE3)pLysS strain. The expression of those transcripts, fused to N-terminal thioredoxin (Trx·Tag), S·Tag and His·Tag fusion proteins in pET32(a), yielded recombinants VMPSTS and VMPHMGR which were only partially soluble while VMPACA was present as an insoluble protein. Functional enzymatic assays were carried out to analyse the functionality of the potential products produced from the catalytic activities of VMPSTS and VMPHMGR, respectively. VMPSTS was expressed as a functionally inactive recombinant protein with no sesquiterpene synthase compounds being detected. VMPHMGR, however, successfully catalyzed the conversion of HMG-CoA to mevalonate lactone. Dehydromevalonic lactone and pantolactone, derivatives of mevalonate lactone were detected from the catalytic reaction of VMPHMGR using GC-MS analysis. The development of a Vanda Mimi Palmer expressed sequence tags (VMPESTs) database will enhance the
understanding of the molecular biology of fragrance biosynthesis pathways in vandaceous orchids and facilitate the identification of novel fragrance-related transcripts in other scented flowers. The successful expression of the cloned products may prove to be a useful asset for applications in the perfumery industry for the generation of custom-made fragrance products.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PEMBANGUNAN PANGKALAN DATA ‘EXRESSED SEQUENCE TAG’ DARIPADA DAN PENCIRIAN GEN TRANSKRIP BERKAITAN BAU WANGI DALAM BUNGA VANDA MIMI PALMER

Oleh

TEH SEOW LING

Ogos 2011

Pengerusi: Janna Ong Abdullah, PhD

Fakulti: Bioteknologi and Sains Biomolekul

Kewangian Vanda Mimi Palmer (VMP) merupakan satu aset yang penting dari segi ekonomi terutamanya dalam bidang kosmetik dan kecantikan. Permintaan tinggi terhadap bunga wangian telah menyumbangkan kepada popularity VMP sebagai pokok hiasan yang digemari di Malaysia. Malangnya, sehingga kini, tiada kajian biologi molekul tentang gen penghasilan wangian daripada VMP dilaporkan dan maklumat tersebut daripada tumbuhan lain juga masih terhad. Walaupun penyelidikan telah dijalankan secara berleluase dari segi biokimia, tapak jalan biokimia penghasilan wangian bagi bunga wang biji masih tidak lengkap.

Tujuan penyelidikan ini adalah untuk mengkaji wangian VMP terutamanya dalam aspek biologi molekul. Satu pangkalan data yang dinamakan Expressed Sequence Tag (EST) telah dibangun untuk mengenalpasti dan mencirikan transkrip yang berpotensi bagi penghasilan wangian. Satu perpustakaan cDNA (cDNA library) untuk bunga VMP yang dihasilkan sebelum ini telah digunakan dengan penghasilan sejumlah 2,132 EST diperolehi. Penghasilan kelompok EST tersebut mengenalpastikan 1,196 ‘unigenes’ di mana 966 adalah ‘singletons’ dan
230 adalah ‘contigs’. Kumpulan EST tersebut diatur susun dengan menggunakan kaedah ‘Gene Ontology’ (GO) kepada tiga kategori berdasarkan fungsi masing-masing: Fungsi Molekul (51.2%), Komponen Sel (16.4%) dan Proses Biologi (24.6%) dan selebihnya (7.8%) tidak menunjukkan persamaan dengan identifier GO. Sebanyak 112 ‘EST-SSR’ telah dilombong. Lima EST dikenalpasti sebagai transkrip cDNA yang terlibat dalam penghasilan wangian telah dipilih untuk pemencilan gen lengkap dan pencirian dengan menggunakan tindakbalas rantain polymerase masa nyata (real-time RT-PCR). Kelima-lima transkrip tersebut ialah ‘acetyl-CoA acetyltransferase’ (VMPACA), ‘3-hydroxy-3-methylglutaryl-coenzyme A reductase’ (VMPHMGR), ‘1-deoxy-D-xylulose 5-phosphate synthase’ (VMPDXPS), ‘linalool synthase’ (VMPLis) and ‘lipoxygenase’ (VMPLox). Kelima-lima transkrip tersebut menunjukkan ekspresi yang berlainan dalam peringkat perkembangan bunga VMP yang tentu. Pada keseluruhannya, ekspresi tinggi diperolehi bagi bunga yang telah berkembang penuh manakala sepal dan petal merupakan tisu bunga yang mengekspres secara dominan. Jujukan lengkap bagi gen transkrip yang berkaitan bau wangian (VMPACA dan VMPHMGR) telah diperoleh. Pengklonan dan ekspresi secara berlebihan telah dilakukan ke atas ketiga-tiga cDNAs yang lengkap jujukan iaitu [VMPACA, VMPHMGR, dan sesquiterpenes synthase (VMPSTS) yang dipencil dalam kajian lepas] di dalam strain ‘Escherichia coli BL21(DE3)pLysS’. Pengekpresian ketiga-tiga transkrip tergabung dengan ‘N-terminal thioredoxin (Trx-Tag)’, ‘S-Tag’ dan ‘His-Tag’ protein di dalam pET32(a) telah menghasilkan rekombinan VMPSTS dan VMPHMGR yang separuh larut dan rekombinan VMPACA yang tidak larut langsung. Esei enzim telah dijalankan untuk pengenalpastian fungsi produk yang dihasilkan daripada aktiviti pemangkinan VMPSTS dan
VMPHMGR. VMPSTS didapati telah diekspres sebagai protein rekombinan yang tidak aktif sebab tiada hasilan sebatian kimia wangian yang dapat dikesan menggunakan alat kromatografi gas-spektrometrik jisim (GC-MS). Akan tetapi, VMPHMGR berjaya menukarkan substrat HMG-CoA kepada mevalonat lakton, dehidromevalonike lakton dan pantolakton sepertimana yang telah dikesan menggunakan GC-MS. Kesimpulannya, pembanguanan pangkalan data ‘Vanda Mimi Palmer Expressed Sequence Tags’ (VMPESTs) adalah penting untuk meningkatkan kefahaman di peringkat biologi molekul berkaitan dengan tapak laluan penghasilan wangian secara lebih terperinci dalam orkid vanda dan memudahkan pengenalan transkrip yang berkaitan dengan penghasilan wangian daripada bunga wangi yang lain. Pengekspresian produk klon yang berjaya dalam kajian kini mungkin dapat diaplikasikan untuk menghasilkan produk wangian yang mengikut citarasa tertentu.
ACKNOWLEDGEMENTS

First and foremost, I would like to express my utmost appreciation to my supervisor, Associate Professor Dr. Janna Ong Abdullah, for her patient and trust in me. Besides, I would also like to thank her for her sincere guidance, encouragement, help and valuable advice throughout my master study. I also want to take this opportunity to thank Associate Professor Dr. Parameswari for being my supervisory committee. She has kindly provided good lab facilities, chemicals and equipments needed for completing my research project in her laboratory. My sincere gratitude is also extended to her for her guidance, support and technical guidance. I have benefited a lot from their guidance, either mentally or physically.

Special thanks to Associate Professor Dr. Ho Chai Ling for giving me the golden opportunity to work and use the instruments in the Molecular Biology Laboratory; Professor Dr. Gwendoline Ee Cheng Lian for giving me permission to use the equipment in the GC-MS laboratory and her beneficial advice on the GC-MS data analyses. I would like to thank United Malaysia Plantation for the maintenance and care on the plant material, *Vanda* Mimi Palmer.

Moreover, I wish to extend my gratitude to my seniors, labmates and friends for their help, teaching, advice and guidance throughout my project. Besides, I would like to thank laboratory staffs and all individuals and departments of the Faculty
of Biotechnology and Biomolecular Sciences for their contribution and support towards the successful completion of the project.

Last but not least, I am indebted to my family and my boyfriend for their moral support, encouragement, blessing and caring during this period. With their care and love to me that have given me the strength to complete my study.
I certified that a Thesis Examination Committee has met on 25 August 2011 to conduct the final examination of Teh Seow Ling on her Master of Science thesis entitled ‘Development of floral Expressed Sequence Tag resource from and characterization of fragrance-related gene transcripts in Vanda Mimi Palmer’ in accordance with the University and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the thesis Examination Committee were as follows:

Sieo Chin Chin, PHD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Norazizah binti Shafee, PHD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Rozi bt. Mohamed, PHD
Lecturer
Faculty of Forestry
Universiti Putra Malaysia
(Internal Examiner)

Sharifah Shahrul Rabiah Syed Alwi, PHD
Felda Biotechnology Centre
(External Examiner)

NORITAH OMAR, PHD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Janna Ong Abdullah, PHD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Parameswari Namasivayam, PHD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

HASANAH MOHD. GHAZALI, PHD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

TEH SEOW LING

Date: 25 August 2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW 4
 2.1 Orchidaceae
 2.1.1 Orchids in general 4
 2.1.2 Vandaceous orchids 6
 2.1.3 Vanda Mimi Palmer 7
 2.2 Floral fragrance 9
 2.2.1 Importance of floral fragrance 9
 2.2.2 Biochemical aspects of floral scents 11
 2.2.3 Discovery of fragrance-related genes and gene products of plant volatiles 16
 2.2.4 Molecular studies(characterization of floral scents 21
 2.2.5 cDNA library 21
 2.2.6 Expressed sequences tags (ESTs) approach 24
 2.2.7 Mining of expressed sequence tags-simple sequence repeats (EST-SSRs) 28
 2.2.8 Polymerase chain reaction (PCR) and real-time quantitative RT-PCR 30
 2.3 Functional assay of fragrance-related genes 34
 2.3.1 Expression in Escherichia coli 34
 2.3.2 pET32(a) vector system 35

3 MATERIALS AND METHODS 37
 3.1 Floral expressed sequence tags (EST) generation 37
 3.1.1 Preparation of bacterial strains 37
 3.1.2 Mass excision of amplified Vanda Mimi Palmer cDNA library 37
 3.1.3 Colony PCR 38
 3.1.4 Agarose gel electrophoresis 39
 3.1.5 Reverse-northern analysis 40
 3.1.6 Plasmid DNA extraction 41
 3.1.7 Sequencing of plasmid DNA 42
 3.1.8 Sequence analysis 43
3.1.9 Sequencing processing and analysis 43
3.1.10 Sequence analyses and annotation 43
3.1.11 In silico identification of simple sequence repeat (SSR)-containing ESTs 44

3.2 Characterization and isolation of fragrance-related genes 44
3.2.1 Plant material and sample collection 44
3.2.2 Total RNA extraction 45
3.2.3 Quantitative analysis of RNA 46
3.2.4 Formaldehyde denaturing agarose gel electrophoresis 47
3.2.5 Full length cDNA isolation of fragrance-related transcripts from *Vanda* Mimi Palmer 47
3.2.6 First-strand cDNA synthesis 48
3.2.7 Gene specific primer design for 5’-RACE 49
3.2.8 5’-Rapid Amplification of cDNA ends (RACE) 49
3.2.9 Gel purification 51
3.2.10 Ligation and transformation 51
3.2.11 Colony PCR 52
3.2.12 Sequencing 53
3.2.13 Full length isolation of acetyl-CoA acetyltransferase (*VMPACA*) 53
3.2.14 Full length isolation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (*VMPHMGR*) 54
3.2.15 Primers for real-time quantitative RT-PCR 55
3.2.16 First-strand cDNA synthesis 57
3.2.17 Real-time quantitative RT-PCR 57

3.3 Molecular cloning of fragrance-related transcripts 58
3.3.1 Design of cloning and expression strategies 58
3.3.2 Plasmid DNA preparation 60
3.3.3 Optimization of polymerase chain reaction (PCR) 60
3.3.4 Purification of PCR product 62
3.3.5 Restriction enzyme digestion 62
3.3.6 Ligation and transformation 63
3.3.7 Confirmation of putative transformants 63
3.3.8 Colony PCR 63
3.3.9 Restriction enzyme digestion 64
3.3.10 Sequencing and sequence analysis 64

3.4 Expression and functional characterization of fragrance-related transcripts 65
3.4.1 Expression host *E. coli* BL21 (DE3) pLysS strain transformation 65
3.4.2 Protein expression and induction with IPTG 65
3.4.3 Extraction of target protein 66
3.4.4 Protein quantification 67
3.4.5 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 68
3.4.6 Sample preparation 68
3.4.7 SDS-PAGE preparation and analysis 68
3.4.8 Gel drying 70
3.4.9 Concentration of protein 70
3.4.10 Purification of target protein 71
3.4.11 Western blotting 71
3.4.12 Functional enzymatic assay 73
3.4.13 GC-MS analysis of VMPHMGR activity 73
3.4.14 GC-MS analysis of VMPSTS activity 74

4 RESULTS AND DISCUSSION 76
4.1 Features of generated Vanda Mimi Palmer expressed sequence tags (VMPESTs) 76
4.2 Functional annotation and classification of VMPEST 77
4.3 Identification and distribution of simple sequence repeats (SSRs) 83
4.4 Gene expression study of fragrance-related transcripts 87
 4.4.1 Real-time quantitative RT-PCR normalization and validation 88
 4.4.2 Molecular characterization of fragrance-related transcripts 91
 4.4.3 Expression analysis of putative acetyl-CoA acetyltransferase (VMPACA) 91
 4.4.4 Expression analysis of putative 1-deoxy-D-xylulose 5-phosphate synthase (VMPDXPS) 94
 4.4.5 Expression analysis of putative 3-hydroxy-3-methylglutaryl-coenzyme A reductase (VMPHMGR) 97
 4.4.6 Expression analysis of putative linalool synthase (VMPLis) 100
 4.4.7 Expression analysis of putative lipoxygenase (VMPLox) 103
 4.4.8 Expression analysis of fragrance-related transcripts 106
4.5 Isolation of full-length fragrance-related transcripts 107
 4.5.1 Sequence analysis of VMPHMGR transcript 108
 4.5.2 Sequence analysis of VMPACA transcript 115
4.6 Functional characterization of fragrance-related transcripts 120
 4.6.1 Cloning, expression and western analysis of recombinant VMPACA in E. coli 120
 4.6.2 Cloning, expression, purification and enzymatic assay of recombinant VMPHMGR in E. coli 124
 4.6.3 Cloning, expression and purification of recombinant VMPSTS in E. coli 132

5 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH 138

REFERENCES 142
APPENDIX A 162
APPENDIX B 164
APPENDIX C 165
APPENDIX D 166
APPENDIX E 168
APPENDIX F 169
APPENDIX G 177
BIODATA OF STUDENT 184
LIST OF PUBLICATIONS 185