IMMUNOMODULATORY EFFECTS OF NEWCASTLE DISEASE VIRUS STRAIN AF2240 ON HUMAN PERIPHERAL BLOOD MONONUCLEAR CELLS ACTIVATION AND CYTOLYTIC ACTIVITY

LAM HAN YUEN

FBSB 2011 13
IMMUNOMODULATORY EFFECTS OF NEWCASTLE DISEASE VIRUS STRAIN AF2240 ON HUMAN PERIPHERAL BLOOD MONONUCLEAR CELLS ACTIVATION AND CYTOLYTIC ACTIVITY

LAM HAN YUEN

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

YEAR 2011
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

IMMUNOMODULATORY EFFECTS OF NEWCASTLE DISEASE VIRUS STRAIN AF2240 ON HUMAN PERIPHERAL BLOOD MONONUCLEAR CELLS ACTIVATION AND CYTOLYTIC ACTIVITY

By

LAM HAN YUEN

JUNE 2011

Chairperson: Noorjahan Banu Mohamed Alitheen, PhD

Faculty: Biotechnology and Biomolecular Sciences

Immunomodulator agent is a substance that can regulate the human immune system to reach therapeutic goal. In this study, Newcastle disease virus (NDV) was used as the immunomodulator to alter human immunity in order to replace current cancer therapies that cause severe side effects to cancer patients. The aim of this study is to examine the in vitro immunomodulatory effects of NDV strain AF2240 on human peripheral blood mononuclear cells (PBMC) proliferation, cytokines production and cytolytic effect on tumor cells. The cell proliferation of NDV-treated PBMC was
determined by BrdU cell proliferation assay. NDV virus titer 2 HAU was able to induce cell proliferation up to 30% indicating that low virus titer was sufficient to stimulate the human immune system. From the immunophenotyping results, the percentage of CD56 cells and cells expressed activating receptors (CD16 and NKG2D), which are normally expressed by natural killer (NK) cells, were increased. Therefore, NK cells might be the predominant activated effector cells in human PBMC. In addition, production of cytokines also revealed activation degree of PBMC, upon virus induction. After virus treatment for 72 hours, the level of cytokines, like IFN-γ, IL-2 and IL-12 were increased. These cytokines functioned to cause cell activation and proliferation and further augment the immune activities. In addition, the cytolytic effect on human tumor cells was determined by co-culturing NDV activated PBMC and tumor target cells. Results showed the activated human PBMC caused cytotoxicity towards human breast cancer, MCF-7 cells, by inducing apoptosis. Also, activated PBMC was cytotoxic on human liver cancer, HepG2 cells, and human leukemic, K562 cells. The findings showed that expression of perforin and granzyme B involved in cytolytic effect of activated PBMC on human tumor cells. In conclusion, NDV strain AF2240 was indicated as a potent immunomodulator to activate human PBMC that leads to cell proliferation, cytokines synthesis and enhancement of cytolytic effect on tumor cells.
Abstrak tesis yang dikemukakan kepada Senate Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

KESAN PEMODULASI-IMUN OLEH VIRUS PENYAKIT NEWCASTLE VIRUS STRAIN AF2240 TERHADAP PENGAKTIFAN SEL MONONUKLEAR DARAH PERIFERI MANUSIA DAN AKTIVITI SITOLITIK

Oleh

LAM HAN YUEN

JUN 2011

Pengerusi: Noorjahan Banu Mohamed Alitheen, PhD

Fakulti: Bioteknologi dan Sains Biomolekul

Agen pemodulasi-imun merupakan satu bahan yang boleh mengawal sistem imun tubuh manusia untuk mencapai matlamat terapeutik. Dalam kajian ini, virus penyakit Newcastle (NDV) digunakan sebagai pemodulasi-imun untuk mengubah sistem immunisasi manusia bagi menggantikan terapi kanser terkini yang menyebabkan kesan samping yang serius untuk pesakit kanser. Tujuan kajian ini adalah untuk menguji secara in vitro kesan pemodulasi-imun strain NDV AF2240 ke atas proliferasi sel mononuklear darah periferi (PBMC) manusia, penghasilan sitokin dan kesan sitolitik pada sel tumor. Proliferasi sel PBMC yang dirawat dengan NDV
ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest and heartiest gratitude to my supervisor, Associate Professor Dr. Noorjahan Banu bt. Mohamed Alitheen, for her sumptuous guidance, limitless patience, advices and encouragement throughout my study. Special thanks also go to my co-supervisors, Professor Datin Paduka Dr. Khatijah Yusoff and Professor Dr. Suraini Abd Aziz, for their guidance, supports and knowledge in facilitating the course of this project. I wish to acknowledge the support from Professor Dr. Abdul Rahman Omar for supplying the virus strain in this study.

Besides, I would like to express my appreciation to my lab-mates, especially Dr. Yeap, Miss Chuah, Miss Jane Liew, Miss Ho, Miss Ng and Mr. Yusran. Their knowledge and experience sharing are highly appreciated. I am grateful to other colleagues in Virology Lab, FBSB, especially Mr. Chia and Mr. Halimi for their assistance and guidance regarding this project. Sincere gratitude is expressed to my family also for their sacrifice and love. In addition, I wish to extend my appreciation to all staffs of FBSB. Very big thanks to Ministry of Science, Technology and Innovation (MOSTI) for providing grant and Universiti Putra Malaysia for providing GRF scholarship.

Finally, I would like to express my greatest gratitude to everyone concerned for their encouragement and comfort during this study. I really appreciate their efforts to make my thesis complete and succeed all along.
I certify that a Thesis Examination Committee has met on 27th June 2011 to conduct the final examination of Lam Han Yuen on his thesis entitled “Immunomodulatory Effects of Newcastle Disease Virus Strain AF2240 on Human Peripheral Blood Mononuclear Cells Activation and Cytolytic Activity” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the degree Master of Science.

Members of the Thesis Examination Committee were as follows:

SUHAIMI MUSTAFA, PhD
Associate Professor
Fakulti Bioteknologi dan Sains Biomolekul
Universiti Putra Malaysia
(Chairman)

MUHAJIR HAMID, PhD
Associate Professor
Fakulti Bioteknologi dan Sains Biomolekul
Universiti Putra Malaysia
(Internal Examiner)

CHEAH YOKE KQUEEN, PhD
Associate Professor
Fakulti Perubatan dan Sains Kesihatan
Universiti Putra Malaysia
(Internal Examiner)

KAMARUDDIN MOHD YUSOFF, PhD
Professor
Faculty of Medicine
Universiti Malaya
Malaysia
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 23 August 2011
The thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree Master of Science. The members of the Supervisor Committee were as follows:

Noorjahan Banu Mohamed Alitheen, PhD
Associate Professor
Fakulti Bioteknologi dan Sains Biomolekul
Universiti Putra Malaysia
(Chairman)

Khatijah Yusoff, PhD
Professor
Fakulti Bioteknologi dan Sains Biomolekul
Universiti Putra Malaysia
(Member)

Suraini Abd. Aziz, PhD
Professor
Fakulti Bioteknologi dan Sains Biomolekul
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or other institutions.

LAM HAN YUEN
Date: 27 June 2011
TABLE OF CONTENTS

ABSTRACT
ABSTRAK
ACKNOWLEDGEMENTS
APPROVAL
DECLARATION
LIST OF TABLES
LIST OF FIGURES
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Immunity</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Peripheral Blood Mononuclear Cells</td>
<td>5</td>
</tr>
<tr>
<td>2.2.1 Natural Killer Cells</td>
<td>6</td>
</tr>
<tr>
<td>2.2.2 Natural Killer Cells Reacted in Different Pathways</td>
<td>9</td>
</tr>
<tr>
<td>2.2.3 Cytokines Involved in Activation of Immune System</td>
<td>12</td>
</tr>
<tr>
<td>2.3 Cytotoxic and Cytolysis</td>
<td>15</td>
</tr>
<tr>
<td>2.4 Modes of Cell Death</td>
<td>15</td>
</tr>
<tr>
<td>2.4.1 Apoptosis</td>
<td>16</td>
</tr>
<tr>
<td>2.4.2 Necrosis</td>
<td>17</td>
</tr>
<tr>
<td>2.5 Cancer</td>
<td>18</td>
</tr>
<tr>
<td>2.6 Breast Cancer</td>
<td>19</td>
</tr>
<tr>
<td>2.6.1 Incidence of Breast Cancer</td>
<td>20</td>
</tr>
<tr>
<td>2.6.2 Diagnosis of Breast Cancer</td>
<td>22</td>
</tr>
<tr>
<td>2.6.3 Treatment of Breast Cancer</td>
<td>24</td>
</tr>
<tr>
<td>2.7 Newcastle Disease Virus</td>
<td>26</td>
</tr>
<tr>
<td>2.7.1 History of Newcastle Disease</td>
<td>27</td>
</tr>
<tr>
<td>2.7.2 Classification of Newcastle Disease Virus</td>
<td>28</td>
</tr>
<tr>
<td>2.7.3 Structure of Newcastle Disease Virus</td>
<td>29</td>
</tr>
<tr>
<td>2.7.4 Pathotyping of Newcastle Disease Virus</td>
<td>30</td>
</tr>
<tr>
<td>2.7.5 Virus Entry and Replication</td>
<td>31</td>
</tr>
<tr>
<td>2.7.6 Mechanism of NDV as anticancer agent</td>
<td>33</td>
</tr>
<tr>
<td>2.7.7 Application of NDV in Cancer Research</td>
<td>34</td>
</tr>
<tr>
<td>2.7.8 Oncolytic Activity of Local NDV Strain</td>
<td>37</td>
</tr>
<tr>
<td>2.7.9 Local NDV Strain AF2240</td>
<td>38</td>
</tr>
</tbody>
</table>