UNIVERSITI PUTRA MALAYSIA

CYTOTOXIC AND ANTIPROLIFERATIVE PROPERTIES OF METABOLITES PRODUCED BY SIX STRAINS OF LACTOBACILLUS PLANTARUM ON HUMAN CANCER CELLS

CHUAH LI OON

FBSB 2010 18
CYTOTOXIC AND ANTIPROLIFERATIVE PROPERTIES OF METABOLITES PRODUCED BY SIX STRAINS OF LACTOBACILLUS PLANTARUM ON HUMAN CANCER CELLS

By

CHUAH LI OON

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, In Fulfilment of the Requirements for the Degree of Master of Science

December 2010
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

CYTOTOXIC AND ANTIPROLIFERATIVE PROPERTIES OF METABOLITES PRODUCED BY SIX STRAINS OF LACTOBACILLUS PLANTARUM ON HUMAN CANCER CELLS

By

CHUAH LI OON

December 2010

Chairman: Assoc. Prof. Dr. Foo Hooi Ling, PhD

Faculty: Faculty of Biotechnology and Biomolecular Sciences

Whole cells, cytoplasmic fractions and fermented products of LAB have been tested for anticancer effect. However, limited information is available for the metabolites produced by Lactobacillus plantarum. In this study, the anticancer effect of metabolites produced by six strains of L. plantarum (UL4, TL1, RS5, RG14, RG11 and RI11) isolated from Malaysian fermented foods was evaluated. All metabolites exhibited in vitro cytotoxic effect on the tested cancer cells (breast, colorectal, cervical, liver and leukemia cancer cell lines). An increased cytotoxic effect was observed with increased dose of metabolites used and time of incubation. In particular, metabolites UL4 exerted the most potent cytotoxicity against human breast carcinoma cells MCF-7 in a dose- and time-dependent manner in MTT assay, with inhibition concentration of 50 % growth (IC$_{50}$) value of 15, 12 and 10% (v/v) for 24, 48 and 72 hours of incubation, respectively. In contrast, no cytotoxicity was detected in primary human peripheral blood mononuclear cells, mouse splenocytes, thymocytes and bone marrow cells for all the six metabolites tested. However,
limited cytotoxicity was detected in nonmalignant human glandular epithelium cells MCF-10A when treated with UL4 and RG14 metabolites. Additionally, UL4 metabolites did not cause haemolysis, indicating cytotoxic effect of metabolites of six strains of *L. plantarum* is selective for malignant cells but spared on normal cells.

Antiproliferative effect was focused on MCF-7 and colon cancer cell line (HT-29). In BrdU cell proliferation assay, all tested metabolites inhibited DNA synthesis of MCF-7 and HT-29 cells. An increased antiproliferative effect was observed with increased dose of metabolites used and time of incubation. In particular, UL4 metabolites exhibited 100% proliferation inhibition on MCF-7, whereas RG14 metabolites exhibited 89% proliferation inhibition on HT-29 for 72 hours of incubation. Growth arrest study showed significant cell growth inhibition (P < 0.05) in MCF-7 treated with UL4 metabolites and HT-29 cells treated with RG14 metabolites.

Mode of cell death induced by UL4 metabolites on MCF-7 cells was elucidated. Results obtained in trypan blue dye exclusion assay suggested that UL4 metabolites did not cause necrosis. Induction of apoptosis rather than necrosis by UL4 metabolites was evident by the presence of most characteristics of apoptosis such as cell shrinkage, blebbing of cell membrane and fragmentation of DNA and nucleus. Annexin V/PI staining showed that substantial early apoptotic cells were detected in MCF-7 cells treated with UL4 metabolites compared to untreated control group. Cells treated with UL4 metabolites showed growth arrest at G₀/G₁ cell phase at 24 hours, followed by the increment of cells in sub-G₀/G₁ in DNA cell cycle analysis. In addition, the TUNEL assay showed that remarkable TUNEL-positive cells were detected in UL4
metabolites-treated MCF-7 cells. The results obtained in this study indicate the potential use of LAB metabolites as a promising antiproliferative and apoptosis induction agent as an alternative in nutraceutical industry and cancer therapy.
Abstrak tesis yang dikemukan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

SIFAT-SIFAT SITOTOSIK DAN ANTI-PROLIFERASI METABOLIT YANG DIHASILKAN OLEH ENAM STRAIN *LACTOBACILLUS PLANTARUM* TERHADAP SEL KANSER MANUSIA

Oleh

CHUAH LI OON

Disember 2010

Pengerusi: Prof. Madya Dr. Foo Hooi Ling, PhD

Fakulti: Fakulti Bioteknologi dan Sains Biomolekul

Keseluruhan sel, fraksi sitoplasma dan produk penapaian LAB telah diuji kesan antikanser. Namun, maklumat terhad didapa ti bagi metabolit yang dihasilkan oleh *Lactobacillus plantarum*. Dalam kajian ini, kesan antikanker metabolit berasal dari enam strain *L. plantarum* (I-UL4, TL1, RS5, RG14, RG11 dan RI11) dipencilkan dari makanan tertapai di Malaysia telah dinilai. Semua metabolit mempamerkan kesan sitotoksik secara *in vitro* pada sel-sel kanser diuji (sel kanser payudara, kolorektal, leher rahim, hati dan leukemia). Kesalan sitotoksik meningkat dengan penambahan dos metabolit dan masa inkubasi yang digunakan. Secara khususnya, metabolit UL4 mempamerkan sitotoksisiti yang paling poten terhadap sel kanser payudara manusia MCF-7 dalam ujian MTT, bergantung kepada dos dan masa yang digunakan, dengan nilai kepekatan perencatan 50% pertumbuhan (IC50) sebanyak 15, 12 dan 10% (v/v) selepas 24, 48 dan 72 jam inkubasi masing-masing. Sebaliknya, sitotoksisiti tidak dikesan di sel mononuklear darah periferi manusia, sel spleen tikus, sel timus tikus dan sel sumsum tulang tikus untuk semua enam metabolit yang diuji.
Namun, sitotoksisisi yang terhad dikesan di sel epitelium kelenjar manusia yang bukan malignant (sel MCF-10A) ketika dirawat dengan metabolit UL4 dan RG14. Secara tambahan pula, metabolit UL4 tidak menyebabkan hemolisis, menunjukkan kesan sitotoksik metabolit yang dihasilkan oleh enam strain *L. plantarum* adalah selektif untuk sel-sel yang malignant sahaja dan tidak memberi kesan terhadap sel normal.

Kesan anti-proliferasi yang tertumpu pada sel MCF-7 dan sel kanser usus besar manusia (sel HT-29) telah diuji. Dalam ujian proliferasi sel BrdU, kesemua enam metabolit yang diuji menunjukkan kesan anti-proliferasi terhadap sel MCF-7 dan sel HT-29. Kesemua ujian anti-proliferasi meningkat dengan peningkatan dos metabolit dan masa inkubasi yang digunakan. Secara khususnya, metabolit UL4 mempamerkan 100% perencatan proliferasi terhadap sel MCF-7, manakala metabolit RG14 mempamerkan 89 % perencatan proliferasi terhadap sel HT-29 pada tempoh incubasi 72 jam. Kajian penyekatan pertumbuhan menunjukkan perencatan pertumbuhan yang nyata (P < 0.05) dalam sel MCF-7 yang dirawati oleh metabolit UL4 dan sel HT-29 yang dirawati oleh RG14.

Cara kematian sel yang dirangsang oleh metabolit UL4 terhadap sel MCF-7 telah dinilai. Keputusan dalam ujian ekslusi tripan biru mencadangkan bahawa metabolit UL4 tidak menyebabkan nekrosis. Induksi apoptosis dan bukan nekrosis oleh UL4 metabolit terbukti dengan pengesanan ciri-ciri utama apoptosis seperti pengecutan sel, “membrane blebbing” serta frakmentasi DNA dan nukleus. Dalam sel MCF-7 yang dirawati dengan metabolit UL4, sel apoptotic awal yang ketara dikesan dalam ujian perwarnaan annexin V/PI berbanding dengan kumpulan kawalan yang tidak dirawati. Dalam analisis kitaran
sel DNA, sel yang dirawati dengan metabolit UL4 menunjukkan penyekatan pertumbuhan di fasa sel G₀/G₁ dalam tempoh 24 jam, diikuti dengan penambahahan sel dalam fasa sub-G₀/G₁. Tambahan pula, penyelidikan fragmentasi DNA dengan ujian TUNEL menunjukkan bahawa sebahagian besar sel yang positif dalam ujian TUNEL telah dikesan dalam sel MCF-7 yang dirawati dengan metabolit UL4. Keputusan yang diperolehi dalam kajian ini menunjukkan potensi terjanji penggunaan metabolit UL4 sebagai satu agen sitotosik dan perangsang apoptosis, dan boleh digunakan sebagai alternatif industri nutraseutikal dan rawatan kanser.
ACKNOWLEDGEMENTS

I owe a debt of gratitude to those who are so generous with their time and expertise. There are so many people whom I deeply respect and whose efforts are amazing. I am no poet I will admit at first, so please forgive me if the rhymes go askew.

Firstly, I would like to attribute my deepest appreciation to Assoc. Prof. Dr. Foo Hooi Ling for giving me the opportunity to work with her. She gets my highest amount of praise for her professionalism and dedicated role of supervisor.

Besides, I would also extend my gratefulness to my co-supervisors; Prof. Dr. Raha Abdul Rahim and Dr. Noorjahan Banu bt. Mohamed Alitheen for their support and valuable discussion in making this research a success. Their caring and easy going characteristics make me feel comfortable to approach them.

Not to be forgotten to express my sincere thanks to Assoc. Prof. Dr. Loh Teck Chwen for his generosity in sponsoring the mice and valuable comments especially in statistical analysis.

I am deeply grateful to all my lab mates in Laboratory of Biotechnology Industry and Animal Tissue Culture Laboratory for their contribution and sharing of knowledge. It is really good to have someone you know you can count on. I am lucky I get to work with them, and I hope that never alters. A heartfelt gratitude would be sent to Dr. Yeap Swee Keong for his effort of guiding me, support and
companion throughout my project. Another special thank to Dr. Ayele for his help in withdrawing blood from animal models.

Last but no least, I am deeply grateful to all my family and friends who are there giving me endless love and support when I happened to be down and depressed. Special thanks go to Qi Jun, Wan Kheng, Boey Lee, Miao Yin, Chee Peng, Sze Yee and Hui Cui, my friends in high places.
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Foo Hooi Ling, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Raha Abdul Rahim, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Noorjahan Banu Alitheen, PhD
Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which has been duly acknowledged. I also declare that it has not been previously, and not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

CHUAH LI OON

Date: 9 December 2010
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The most commonly used species of LAB</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Biochemical aspects of apoptosis</td>
<td>35, 36</td>
</tr>
<tr>
<td>3.1</td>
<td>Cytotoxic effect of metabolites produced by six strains of L. plantarum on various cancer cell lines for 24 hours of incubation</td>
<td>58</td>
</tr>
<tr>
<td>3.2</td>
<td>Cytotoxic effect of metabolites produced by six strains of L. plantarum on various cancer cell lines for 48 hours of incubation</td>
<td>59</td>
</tr>
<tr>
<td>3.3</td>
<td>Cytotoxic effect of metabolites produced by six strains of L. plantarum on various cancer cell lines for 72 hours of incubation</td>
<td>60</td>
</tr>
<tr>
<td>3.4</td>
<td>Cytotoxic effects of metabolites produced by six strains of L. plantarum on various normal cells for 24 hours of incubation</td>
<td>64</td>
</tr>
<tr>
<td>3.5</td>
<td>Cytotoxic effects of metabolites produced by six strains of L. plantarum on various normal cells for 48 hours of incubation</td>
<td>65</td>
</tr>
<tr>
<td>3.6</td>
<td>Cytotoxic effects of metabolites produced by six strains of L. plantarum on various normal cells for 24 hours of incubation</td>
<td>66</td>
</tr>
<tr>
<td>5.1</td>
<td>Effect of UL4 metabolites on trypan blue dye exclusion of MCF-7 cells</td>
<td>92</td>
</tr>
<tr>
<td>5.2</td>
<td>Cell death modes of MCF-7 cells induced by UL4 metabolites</td>
<td>94</td>
</tr>
<tr>
<td>5.3</td>
<td>Effect of UL4 metabolites on cell cycle phases distribution of MCF-7 cells</td>
<td>104</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Cytotoxic dose-response curve for MCF-7 cells treated with UL4 metabolites</td>
<td>57</td>
</tr>
<tr>
<td>3.2</td>
<td>Dose-dependent hemolysis of human, dog, rabbit and chicken RBC by UL4 metabolites</td>
<td>68</td>
</tr>
<tr>
<td>4.1</td>
<td>Antiproliferative effect of metabolites produced by six strains of L. plantarum on MCF-7 cells</td>
<td>76</td>
</tr>
<tr>
<td>4.2</td>
<td>Antiproliferative effect of metabolites produced by six strains of L. plantarum on HT-29 cells</td>
<td>79</td>
</tr>
<tr>
<td>4.3</td>
<td>Antiproliferative effect of UL4 metabolites on MCF-7 cells determined via trypan blue staining and cell counting</td>
<td>82</td>
</tr>
<tr>
<td>4.4</td>
<td>Antiproliferative effect of RG14 metabolites on HT-29 cells determined via trypan blue staining and cell counting</td>
<td>83</td>
</tr>
<tr>
<td>5.1</td>
<td>Fluorescence photomicrographs of MCF-7 cells treated with UL4 metabolites at the concentration of IC$_{50}$</td>
<td>96</td>
</tr>
<tr>
<td>5.2</td>
<td>Fluorescence photomicrographs of MCF-7 cells treated with UL4 metabolites at the concentration of 2 × IC$_{50}$</td>
<td>97</td>
</tr>
<tr>
<td>5.3</td>
<td>Photomicrographs of MCF-7 cells treated with IC$_{50}$ of UL4 metabolites</td>
<td>99</td>
</tr>
<tr>
<td>5.4</td>
<td>Photomicrographs of MCF-7 cells treated with 2 × IC$_{50}$ of UL4 metabolites</td>
<td>100</td>
</tr>
<tr>
<td>5.5</td>
<td>Effect of UL4 metabolites on annexin V binding of MCF-7 cells</td>
<td>102</td>
</tr>
<tr>
<td>5.6</td>
<td>Two parameter scatterplots (left panel) and single parameter histogram (right panel) illustrating the detection of DNA strand breaks in apoptotic cells by TUNEL assay for 48 hours of incubation</td>
<td>107</td>
</tr>
<tr>
<td>5.7</td>
<td>Two parameter scatterplots (left panel) and single parameter histogram (right panel) illustrating the detection of DNA strand breaks in apoptotic cells by TUNEL assay for 48 hours of incubation</td>
<td>108</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

ABSTRACT ii
ABSTRAK v
ACKNOWLEDGEMENTS viii
APPROVAL x
DECLARATION xii
LIST OF TABLES xiii
LIST OF FIGURES xiv
LIST OF ABBREVIATIONS xv

CHAPTER

1 INTRODUCTION 1
2 LITERATURE REVIEW 6
 2.1 Lactic Acid Bacteria
 2.1.1 Lactic Acid Bacteria Metabolites 7
 2.1.2 Importance of Lactic Acid Bacteria as Probiotics 11
 2.1.3 Health Effects of Lactic Acid Bacteria 13
 2.2 Cell Cycle and Cancers 15
 2.2.1 Cell Cycle Regulatory Checkpoints 15
 2.2.2 Misregulated Fate - Cancer 17
 2.2.3 Breast Cancer and Epidemiology Study 18
 2.2.4 Colon Cancer and Epidemiology Study 19
 2.3 Cancer Therapies 20
 2.3.1 Cytotoxic Agents 22
 2.3.2 Natural Sources of Chemopreventive and Cytotoxic Agents 23
 2.3.3 Lactic Acid Bacteria and Antiproliferative Effects 24
 2.3.4 Lactic Acid Bacteria and Anticancer Effects 25
 2.3.5 Lactic Acid Bacteria and Breast Cancer 26
 2.3.6 Lactic Acid Bacteria and Colon Cancer 28
 2.4 Cell Death 29
 2.4.1 Apoptosis 30
 2.4.2 Apoptosis and Cancer Therapy 32
 2.4.3 Recognition and Detection of Apoptosis 33
 2.4.4 Necrosis 36
 2.5 Analytical Methods for Determination of Cytotoxicity, Antiproliferation and Modes of Cell Death 37
 2.5.1 Tetrazolium Colorimetric Assay 37
 2.5.2 Red Blood Cells Hemolysis Assay 39
 2.5.3 Bromo-Deoxyuridine Cell Proliferation Assay 39
 2.5.4 Morphological Assessment of Apoptosis 40
3 IN VITRO CYTOTOXIC EFFECTS OF L. PLANTARUM METABOLITES ON CANCER CELL LINES AND NORMAL CELLS

3.1 Introduction 48
3.2 Materials and Methods
 3.2.1 Bacterial Strains and Growth Conditions 50
 3.2.2 Production of Metabolites 50
 3.2.3 Cell Lines and Growth Conditions 51
 3.2.4 Isolation of Mice Splenocytes, Thymocytes and Bone Marrow Cells 52
 3.2.5 Isolation of Human Peripheral Blood Mononuclear Cells Using Ficoll-Paque Gradient Separation 54
 3.2.6 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyl Tetrazolium Bromide Assay 54
 3.2.7 Red Blood Cells Hemolysis Assay 55
 3.2.8 Statistical Analysis 56
3.3 Results and Discussion
 3.3.1 Cytotoxic Effect on Viability of Various Types of Cancer Cell Lines 57
 3.3.2 Cytotoxic Effect on Viability of Various Types of Normal Cells 64
 3.3.3 Red Blood Cells Hemolytic Study 67
3.4 Conclusion 69

4 IN VITRO ANTIETROPLIFERATION ASSAY OF L. PLANTARUM METABOLITES ON HUMAN COLORECTAL AND BREAST CANCER CELLS

4.1 Introduction 71
4.2 Materials and Methods
 4.2.1 Bromo deoxyuridine Cell Proliferation Assay 72
 4.2.2 Growth Arrest Study 74
 4.2.3 Statistical Analysis 75
4.3 Results and Discussion
 4.3.1 Bromo deoxyuridine Cell Proliferation Assay 75
 4.3.2 Growth Arrest Study 81
4.4 Conclusion 84

5 DETERMINATION OF CELL DEATH MODES INDUCED BY L. PLANTARUM METABOLITES ON MCF-7 HUMAN BREAST CANCER CELL

5.1 Introduction 86
5.2 Materials and Methods
 5.2.1 Trypan Blue Dye Exclusion Assay 87
5.2.2 Fluorescent Microscopy (Acridine Orange/Propidium Iodide Staining) 87
5.2.3 Flow Cytometry Detection of Phosphatidyl Serine Exposure 89
5.2.4 DNA Cell Cycle Analysis 89
5.2.5 Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling Assay 90
5.2.6 Statistical Analysis 91

5.3 Results and Discussion
5.3.1 Trypan Blue Dye Exclusion Assay 92
5.3.2 Morphological Characteristics of Dead Cell 94
5.3.3 Flow Cytometric Quantification of Apoptotic Cells 102
5.3.4 DNA Cell Cycle Analysis 104
5.3.5 DNA Strand Breaks of Apoptotic Cells 107

5.4 Conclusion 113

6 GENERAL CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH 115

REFERENCES/BIBLIOGRAPHY 123
APPENDICES 151
BIODATA OF STUDENT 169
LIST OF PUBLICATIONS 170