EFFECTS OF NITROGEN SOURCES ON SELECTED BIOCHEMICAL PROPERTIES OF *ORYZA SATIVA* L. CULTIVARS

By

YAP WAI SUM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

April 2006
DEDICATED TO:

Souls that entrapped in the mastermind of the body,
May you find happiness...

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science
Fifteen recommended rice cultivars were used in this experiment. They were Setanjung, Muda, MR 84, RU 2242-1-1, IR 64, MR 185, MR 151, MR 159, MR 167, MRQ 34, MR 207, MR 209, MR 211, MR 219 and MR 220. Leaves of three-week old seedlings were analyzed for nitrogen assimilating enzymes, namely nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT) and glutamate dehydrogenase (GDH) activities to evaluate the assimilation of N supply whereas ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity was use as an indicator for photosynthesis. The end products of N and C metabolism such as chlorophyll, soluble protein, fresh weight, soluble carbohydrates and starch contents were also analyzed. These biochemical evaluation were carried out in three different growth medium known as ‘control ~ without nitrogen sources’, ‘NO₃⁻ containing medium’ and ‘NH₄⁺ containing medium’ to determine the effect of different N sources. Treatments were laid out in split-plots in a randomized complete block design with N treatment as the main plot and cultivars as the subplot. In the study obtained, the addition of external
N sources did not help in accelerating the activities of N assimilating enzymes (NR, NiR, GS, GOGAT and GDH) as well as Rubisco when compared to control medium. In the leaves of three-week old seedlings, NR, NiR, GS and Rubisco activities were negatively related with the availability of N sources (-88%, -28%, -22% and -13%, respectively). GOGAT activity was demonstrated not to be influenced by the addition of N sources (no significant different) whereas GDH activity was higher in control (+51%) and NH$_4^+$ (+20%) containing medium as compared to NO$_3^-$.

In investigation of the effects of different nitrogen sources on selected N and C metabolites, positive correlation was observed. The increment of nearly 40% under nitrate supply and 62% in ammonium of the soluble protein content was seen with the external addition of N. Similarly, there was also an increased in the fresh weight (FW) content of nearly 0.8-fold in NO$_3^-$ grown plants to 0.2-fold in NH$_4^+$ fed plants when different N sources were applied (the increased in ammonium supply was not statistically significant in comparison with control). This lower FW content under ammonium supply could be the consequences of the slight chlorosis observed in the leaves tissue. In contrast, chlorophyll content happened to be lower in both NO$_3^-$ and NH$_4^+$ containing medium, with a reduction of 30% and 14%, respectively. Soluble carbohydrates content was slightly higher under nitrate supply than in ammonium whereas the control medium was found to possess higher starch content. Lower starch content in both medium (NO$_3^-$ and NH$_4^+$) could possibly relate to higher nitrogen use efficiency which resulted in an increase of soluble protein and FW contents. Apparently, the antioxidative property of ascorbic acid content was significantly higher in both control and NH$_4^+$ containing
medium, whereas glutathione reductase (GR) activity was highest under ammonium supply.

Cultivars as the subplot were found to demonstrate high significant evidence ($P < 0.001$) and were in consistency among the entire biochemical analyses, indicating genetic materials (15 rice cultivars) being one of the influential factor in regulating the outcome of the biochemical results obtained.
songsang dengan kehadiran sumber N (-88%, -28%, -22% dan -13%, masing-masing). Aktiviti GOGAT pula tidak dipengaruhi dengan penambahan sumber N (tiada perbezaan yang signifikan) manakala aktiviti GDH adalah lebih tinggi pada kawalan (+51%) dan pada media NH$_4^+$ (+20%) apabila dibandingkan dengan NO$_3^-$.

Berdasarkan kajian ke atas kesan sumber N yang berbeza terhadap metabolit N dan C yang terpilih, perkadaran yang positif dapat dilihat. Peningkatan protein larut sebanyak 40% di bawah sumber nitrat dan 62% di bawah sumber ammonium dapat dikesan dengan penambahan N. Begitu juga dengan kandungan berat basah, di mana penambahan sebanyak 0.8-kali dalam NO$_3^-$ dan 0.2-kali dalam NH$_4^+$ dapat dihampirkan apabila sumber N yang berbeza digunakan (peningkatan pada sumber ammonium tidak menunjukkan perbezaan yang signifikan jika dibandingkan dengan kawalan). Kandungan berat basah yang berkurangan ini mungkin disebabkan oleh klorosis yang dapat diperhatikan pada tisu daun anak pokok padi yang dibekalkan dengan sumber ammonia. Sebaliknya, kandungan klorofil yang diperolehi adalah lebih rendah pada kedua-dua kandungan media NO$_3^-$ dan NH$_4^+$, dengan penurunan masing-masing sebanyak 30% dan 14%. Kandungan karbohidrat larut pula menunjukkan sedikit peningkatan apabila dibekalkan dengan nitrat barbanding dengan ammonium manakala media kawalan mempunyai kandungan kanji yang lebih tinggi. Kandungan kanji yang lebih rendah di kedua-dua NO$_3^-$ dan NH$_4^+$ mungkin disebabkan oleh keberkesanan penggunaan nitrogen yang lebih tinggi dengan menyebabkan peningkatan dalam kandungan protein larut dan berat basah. Sebaliknya, kandungan antioksidan asid askorbik pula menunjukkan secara signifikan
lebih tinggi di media kawalan dan \(\text{NH}_4^+ \), manakala glutathion reductase (GR) menunjukkan aktiviti yang tertinggi pada media ammonium.

Kultivar sebagai subplot pula menunjukkan bukti signifikasi yang tinggi dengan \(P < 0.001 \) dan keadaan ini adalah konsisten pada semua analisis biokimia yang dikaji. Ini menunjukkan bahawa bahan genetik merupakan satu faktor penting yang mengawalatur keputusan yang bakal diperolehi.

ACKNOWLEDGEMENTS

A masterpiece of work is a measurement of assurance, determination, courage and most important of all ~ advices, assistants and supports from all walk of lives. The emergence of this thesis is by no means of my own conviction, but merely existed as a consequence of all the lovely and wonderful people around me. Here, may I attribute my sincere gratitude and endless appreciation to those that have left a footprint in my devoted thesis or in my life.
First and foremost, my earnest thanks go to my beloved supervisor Professor Dr. Maziah Mahmood. Your faith and trust empowered me to have full conviction of the works that have been passed to me. Your special care and attention, with adequate advices and encouragement always lingering in my ears to face any challenges and obstacles ahead. Thank you for all the superb works that you have been fighting for all these years. Without the strength willpower that keeps your persistency, I would not be able to be a part of this project.

My second appreciation goes to my co-supervisor, Dr. Mohd. Puad Abdullah. Being a dedicated and passionate advisor, he is always full with brilliant and wonderful ideas. His love and passion towards his work helped me to capture and focus deliberately to the work that I needed to do. His willingness to share most of his priceless experiences eases my burden of the loaded works. My deepest thanks to him for his invaluable guidance, assistant and tolerance in me throughout the project. The flow of my work would not be that smooth without your advices!

My next appreciation goes to all the people in Lab 235, whether you’re undergraduates, research assistants or postgraduate students that once prevailed in my life. You might not discern those tiny great things that you have done, which have added much more joy and goodness in my every day’s life! May I express my sincere gratitude and gratefulness to those that had helped me endlessly in every single piece of my work. Not forgetting also, my appreciation to all the staffs in this department for their kindness and helpfulness. For
those that unleash selfishness and discouragements, thanks for the little push in creating a more decent, determine and strong willpower in me.

To my devoted parents, brothers, sister and my lovely niece; thank you for your fully support and trust in me. I’m thankful in becoming who I am, under some rutted environment that makes my life more challenging and meaningful! Special thanks to my teachers and my beloved friends that helped in creating the uniqueness in me. Thank you for walking in my life and accompany me through all the ups and downs of life!

“IN REACHING FOR GOLDS,

MOST PEOPLE FORGOT ABOUT THE SILVER LINING”

I certify that an Examination Committee has met on 5th April 2006 to conduct the final examination of Yap Wai Sum on his Master of Science thesis entitled “Effects of Nitrogen Sources on Selected Biochemical Properties of Oryza sativa L. Cultivars” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Siti Khalijah Daud, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Janna Ong Abdullah @ Ong Weoi Choo, PhD
Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)
Mohd Razi Ismail, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Othman Omar, PhD
Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(External Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

This thesis submitted to the Senate of Universiti Putra Malaysia as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Maziah Mahmood, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Mohd Puad Abdullah, PhD
Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

YAP WAI SUM

Date:
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRAK vi
ACKNOWLEDGEMENTS ix
APPROVAL xi
DECLARATION xiii
LIST OF TABLES xvii
LIST OF FIGURES xviii
LIST OF ABBREVIATIONS xix

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW 7
2.1 Nitrogen Assimilation in Plants 7
2.1.1 Nitrate Assimilation 8
2.1.2 Ammonium Assimilation 13
2.1.3 \(\text{NO}_3^- \text{ and NH}_4^+ \) Uptake in Plants 18
2.2 Photosynthesis 19
2.2.1 Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase 21
2.2.2 Photosynthate Allocation and Partitioning 23
2.3 Carbon and Nitrogen Assimilations in Relation with Yield 28
2.4 Selected Antioxidants 31
2.4.1 Ascorbic Acid 31

3 MATERIALS AND METHODS 35
3.1 Plant Materials 35
3.2 Preparation of Plant Materials 37
3.2.1 Seedlings 37
3.3 Preparation of Crude Extracts 40
3.4 Assay Methods 40
3.4.1 Nitrate Reductase 40
3.4.2 Nitrite Reductase 41
3.4.3 Glutamine Synthetase 42
3.4.4 Glutamate Synthase 43
3.4.5 Glutamate Dehydrogenase 44
3.4.6 Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase 45
3.4.7 Chlorophyll Content 46
3.4.8 Soluble Protein Content 47
3.4.9 Carbohydrate Contents 47
3.4.10 Selected Antioxidative Properties 48
3.5 Experimental Design and Statistical Analysis 51
3.6 General Chemicals and Supplies

4 RESULTS AND DISCUSSION

4.1 The Effects of NO$_3^-$ and NH$_4^+$ on N Assimilating Enzymes and Rubisco

4.1.1 Nitrogen Assimilating Enzymes
4.1.2 Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase
4.1.3 Discussion for N Assimilating Enzymes an Rubisco

4.2 Selected Nitrogen and Carbon Metabolites

4.2.1 Chlorophyll Content
4.2.2 Soluble Protein Content
4.2.3 Fresh Weight Content
4.2.4 Carbohydrate Contents

4.3 Selected Antioxidative Properties

4.3.1 Ascorbic Acid Content
4.3.2 Glutathione Reductase

4.4 Overall Discussion

5 CONCLUSIONS AND FUTURE RESEARCH

5.1 Conclusions
5.2 Future research

BIBLIOGRAPHY

APPENDICES

BIODATA OF THE AUTHOR