EFFECT OF CRYOPRESERVATION ON MICRO STRUCTURE
OF RAMBUTAN EMBRYONIC AXIS

By

CHUA CHIN KOK

Thesis Submitted to the School of Graduate Studies, Universiti Putra
Malaysia, in Fulfilment of the Requirements for the
Degree of Master of Science

March 2004
Specially dedicated to

my beloved family

and Sooi Ping
Abstract of thesis to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

EFFECT OF CRYOPRESERVATION ON MICRO STRUCTURE OF RAMBUTAN EMBRYONIC AXIS

By

CHUA CHIN KOK

March 2004

Chairman: Uma Rani Sinniah, Ph.D.

Faculty: Agriculture

Nephelium lappaceum or locally known as rambutan is a valuable fruit species in Malaysia with export potential. Due to its recalcitrant seed characteristic, it cannot be preserved under classical storage conditions and thus, cryopreservation offers a promising tool for long-term storage and conservation of its genetic resources. The study on the morphology and anatomy of excised embryonic axes from seeds of rambutan was undertaken to provide a scientific understanding of the material to be cryopreserved and to elucidate the basis of cryopreservation-associated injuries. Histology of the embryonic axis, both longitudinal and transverse sections were carried out which allowed the reconstruction of three-dimensional model. The embryonic axis consisted of conical shaped epicotyl and dome shaped radicle. The recommended size for excision of the embryonic axis would be a 3mm cubical block that is made up of an oblong structured inner axis (1.8mm in length) attached to some amount of cotyledonary tissue. Retaining part of the cotyledon with the embryonic axis helped to provide the minimal nutrient supply for the embryonic axis. The three-dimensional model showed the connection of the embryonic axis to the cotyledons. The cotyledonary vessel
from the procambium of the radicle appeared to be the umbilical cord of the embryonic axis to the cotyledon. The embryonic axis, in vivo, and ex vivo, shared similar growth and development pattern. With adequate moisture, it was able to undergo the normal germination process. Shoot development in in vivo and ex vivo embryonic axis was normal and rapid. Within four days of moisture imbibition, the conical shaped epicotyl had expanded into initial shoot. Growth of trichomes or hairy structures, which presumably could protect the embryonic axis from rapid desiccation and injury, also ensures germination. Dissimilarity occurred when the axis that germinated within the seed (in vivo) developed root cap while those cultured on MS media (ex vivo) did not. However, this characteristic had no adverse effect against a normal germination route.

Cryopreservation of recalcitrant seed species is difficult and is often not reproducible. Results reported by Hiew (1991) and Ginibun (2001) were not reproducible in this study in spite of close adherence to the protocol used. Even minor modification of the successful recipe and protocols reported by them did not produce surviving cryopreserved embryonic axis. It is evident in the study that the cells of the embryonic axis were possibly killed by the subzero temperature of the liquid nitrogen. As compared to the severe damage of fresh embryonic axis when directly exposed to liquid nitrogen, the structural damage of the cryopreserved embryonic axis appeared to be minimised after pretreatment by vitrification. This study suggested that the recipe of the vitrification solution used by Ginibun (2001) was not sufficient to reproduce the results reported. However, the potential of vitrification as a pretreatment prior to cryopreservation in liquid nitrogen cannot be discounted. Further study needs to be pursued on the effects of
liquid nitrogen on the vitrified cryopreserved embryonic axis of recalcitrant rambutan at the ultrastructural level. Fundamental studies through microscopic work have provided new insight and understanding of the plant material.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN KRIAOAWETAN TERHADAP STRUKTUR MIKRO EMBRIO RAMBUTAN

Oleh

CHUA CHIN KOK

Mac 2004

Pengerusi: Uma Rani Sinniah, Ph.D.

Fakulti: Pertanian

Nephelium lappaceum atau lebih dikenali dengan nama tempatan iaitu rambutan merupakan salah satu spesis buah-buahan di Malaysia yang penting dan mempunyai nilai potensi ekspor. Oleh kerana biji benihnya yang bersifat rekalsitran, ia tidak boleh disimpan dalam keadaan simpanan klasik, maka teknik krioawetan merupakan satu kaedah untuk penyimpanan jangkamasa panjang serta pemuliharaan sumber genetiknya. Paksi embrio yang diasingkan daripada biji benih rambutan telah dikaji dari segi morfologi dan anatomi untuk memberi satu kefahaman saintifik ke atas bahan yang dikrioawet dan juga untuk menjelaskan asas kecederaan yang dikaitkan dengan proses krioawetan. Histologi terhadap paksi embrio telah dibuat pada bahagian-bahagian memanjang dan melintang bagi memudahkan pembentukan model tiga dimensi. Paksi embrio terdiri daripada epikotil yang berbentuk kon dan radikel yang berbentuk kubah. Saiz pemotongan paksi embrio yang dicadangkan ialah blok kubus sepanjang 3mm yang terdiri daripada paksi dalaman persegi bujur (panjang 1.8mm) yang bersambung dengan sebahagian kecil tisu kotiledon. Penekalan sebahagian tisu kotiledon dengan paksi embrio ini membantu membeakalkan nutrien yang minima

ACKNOWLEDGEMENTS

I would like to express my deep appreciation and gratitude to the chairperson of my supervisory committee, Dr. Uma Rani Sinniah, for her invaluable guidance and patience in making the completion of this thesis a success. I am also indebted and very grateful to my committee members Professor Dr. Abdul Rahman Razak and Associate Professor Dr. Abdul Ghani Yunus for their kind advice, suggestion and invaluable discussion during the preparation and completion of this thesis. Thanks are also due to Professor Emeritus Dr. Chin Hoong Fong, Dr. Hor Yue Luan and Associate Professor Dr. Fauziah Othman for their useful assistance and suggestions.

Sincere appreciation is also extended to the Intensive Research for Priority Area (IRPA) Project and PASCA scheme fellowship for financial support throughout the period of this study.

A special thank you to Kak Nora, En. Shamsudin Bujang, Kak Asiah, En. Daud and Siti from the Faculty of Agriculture, UPM, for their helpful laboratory assistance. Thanks also to the staff from the Electron Microscopy Unit, Institute of Bioscience and Institute of Multimedia and Software, UPM.

I wish to thank Mr. Ong Choon Hoe and Ms. Lim Sooi Ping for their friendship, encouragement and help in various ways during this study. Last but not the least, my heartiest thanks goes to my parents and other members of my family for their patience, understanding and support throughout this study.
I certify that an Examination Committee met on 13 March 2004 to conduct the final examination of Chua Chin Kok on his Master of Science thesis entitled “Effect of Cryopreservation on Micro Structure of Rambutan Embryonic Axis” in accordance with Universiti Pertanian (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Mihdzar Abdul Kadir, Ph.D.
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Saleh Kadzimin, Ph.D.
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Maheran Abdul Aziz, Ph.D.
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Daniel Baskaran Krishnapillay, Ph.D.
Director of Forest Plantation Division
Forest Research Institute of Malaysia (FRIM)
(Independent Examiner)

GULAM RUSUL RAHMAT ALI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Uma Rani Sinniah, Ph.D.
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Abdul Rahman Razak, Ph.D.
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Abdul Ghani Yunus, Ph.D.
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

AINI IDERIS, Ph.D.
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

CHUA CHIN KOK

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**

2. **LITERATURE REVIEW**

 2.1 History, Origin and Distribution
 2.2 The Rambutan Industry
 2.3 Germplasm Conservation
 2.4 *In Vitro* Conservation
 2.4.1 Slow growth
 2.4.2 Cryopreservation
 2.5 Cryopreservation for Recalcitrant Seed Species
 2.5.1 Dehydration Injury
 2.5.2 Chilling Injury
 2.6 Factors Affecting Cryopreservation of Recalcitrant Seeds
 2.6.1 Size of Zygotic Axes
 2.6.2 Structure of Zygotic Axes
 2.6.3 Root Alices of Zygotic Axes
 2.6.4 Shoot Alices of Zygotic Axes
 2.7 Cryopreservation of Rambutan Embryonic Axes

xiii
3. CRYOPRESERVATION OF RAMBUTAN (CLONES R162, R7 AND R156) USING CRYOPROTECTANT-DESICCATION AND VITRIFICATION TECHNIQUE 26

3.1 Preface 26
3.2 Materials and Methods 28
 3.2.1 Location of Study 28
 3.2.2 Source of Fruits 28
 3.2.3 Excision of Embryonic Axes 29
 3.2.4 Cleaning of Borosilicate Culture Tubes for In Vitro Studies 30
 3.2.5 Preparation of MS Stock Solutions and Culture Media 30
 3.2.6 Preparation of Cryoprotectant, Loading and Vitrification Solution 31
 3.2.6.1 Preparation of Cryoprotectant Solution 31
 3.2.6.2 Preparation of Loading, Vitrification (L Solution), Unloading Solutions and Stabilisation Medium 31
 3.2.7 Procedures for Cryoprotectant-desiccation and Vitrification Based Experiments 32
 3.2.7.1 Cryoprotectant-Desiccation 32
 3.2.7.2 Vitrification 33
 3.2.8 Measurements and Observation 35
 3.2.8.1 Percentage Moisture Content of Embryonic Axes 35
 3.2.8.2 Percentage Survival of Embryonic Axes on MS Medium 36
 3.2.9 Experiments 37
 3.2.10 Statistical Analysis 38
3.3 Results and Discussion 39
3.4 Conclusion 49

4. MICROSTRUCTURE OF RAMBUTAN EMBRYONIC AXIS 51

4.1 Preface 51
4.2 Materials and Methods 53
 4.2.1 Location of Study 53
 4.2.2 Preparation for Wax Embedding Histology of Embryonic Axis 53
 4.2.2.1 Fixation 53
 4.2.2.2 Dehydration 54
 4.2.2.3 Microtoming 54
 4.2.2.4 Mounting 54
 4.2.2.5 Staining 55
 4.2.3 Preparation for Scanning Electron Microscopy (SEM) 55
 4.2.4 Three-Dimensional Reconstruction of the Embryonic Axis 56
Results and Discussion

4.3.1 Microstructure of Rambutan Embryonic Axis 58
4.3.2 Types of Cell in Rambutan Embryonic Axis 64
 4.3.2.1 Ground Tissue of the Embryonic Axis and Cotyledon 64
 4.3.2.2 Procambial Cell 66
 4.3.2.3 Protoxylem Cell 68
4.3.3 Transverse Section of Rambutan Embryonic Axis 70
4.3.4 Three-Dimensional Reconstruction of Rambutan Embryonic Axis 73

Conclusion
4.4 Conclusion 76

The Structural Changes of the Germinating Rambutan Embryonic Axis in and ex vivo

5.1 Preface 77
5.2 Materials and Methods 78
 5.2.1 Experiment Preparation 78
5.3 Results and Discussion 79
 5.3.1 Epicotyl 79
 5.3.2 Radicle 84
5.4 Conclusion 88

Structural Changes of Rambutan Embryonic Axis After Cryopreservation

6.1 Preface 89
6.2 Materials and Methods 89
 6.2.1 Experiment Preparation 89
6.3 Results and Discussion 90
6.4 Conclusion 94

Summary and Conclusion

7. SUMMARY AND CONCLUSION 95

References

REFERENCES 97

Appendices

APPENDICES 107

Biodata of the Author

BIODATA OF THE AUTHOR 116