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The task of materials and design engineers is to determine the 
optimum material for a product by utilizing a materials selection 
tool, which can reduce the cost of manufacturing and improve 
product performance. Thus, various tools have been developed to 
assist designers in selecting the most suitable material for a product 
such as  the  knowledge-based system, neural network and analytical 
hierarchy process.  

Knowledge-based System 

The expert system or knowledge-based system is an intelligent 
computer system that uses knowledge and inference procedures 
to solve problems, which are so difficult as to require significant 
human expertise for their solution (Hunt, 1986). Application of a 
knowledge-based system in materials selection is quite obvious. 
The knowledge-based system is most often used in the context of 
a system which gives advice; where some representative examples 
include the work of Sapuan (1998) and Sapuan and Abdalla (1998) 
where they developed an expert system for material selection for 
polymeric-based composite automotive components. Knowledge-
based systems can capture the knowledge of experts that may 
otherwise be lost through death or retirement. They can contain 
the cumulative knowledge of several experts, and are available 
any time day or night, and can be distributed widely throughout 
and organisation (Dieter, 2000). However, the knowledge-
based system suffers from some disadvantages such as unclear 
relations between rules, ineffective search strategy, complexity 
and being diff icult to learn (Sapuan, 2005).
	 In a knowledge-based system (KBS) a series of rules are used to 
select materials. A KBS has the ability to select the most suitable 
material and can rank the materials according to its properties 
(Sapuan et al., 2002). Sapuan (2001) has reviewed various KBSs 
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for materials selection in mechanical engineering design. The 
work carried out by Sapuan (1998) and Sapuan and Abdalla (1998) 
involved the use of KBS for composite material selection. The 
selection of suitable materials for an automotive pedal box system 
was the main emphasis in this research work. Figure 7 shows the 
general architecture of the research work. 

Figure 7  General structure of KBS of material selection 
(Sapuan and Abdalla, 1998)

	 The KBS enables users to select suitable materials that satisfy all 
pre-defined criteria and constraints. A material must satisfy all the 
constraints in order to become a suitable candidate for a particular 
component.  In the work of  Sapuan (1998) and Sapuan and Abdalla 
(1998), reasoning was carried out via decision rules whereby the 
rule-based system is the major tool in the material selection process. 
The system was used to select suitable materials for the polymeric 
composite automotive pedal box system (See Figure 8). 
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Figure 8   3D solid model for polymeric composite pedal box system

	 The rules are chained using forward chaining and the candidates 
for the component, are proposed. When the conditions of a rule 
are satisfied then the conditions are valid. The rule is in the form 
of: If (condition) Then (conclusion). If the conclusion of a rule is 
satisfied, then the conclusion of the rule is set as the result. This 
prototype was developed using the KEE tool-kit and the selection 
was carried out using rule base: If, Then, Else. For example, the 
selection of material for the accelerator pedal can be defined through 
the following rules:

If

	 (the corrosion resistance of this material is high)	 and

	 (the water absorption of this material is low)		  and

	 (the cost of this material is low)			   and
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	 (the dimensional stability of this material is good)	 and

	 (the modulus of elasticity of this material is high)	 and

	 (the yield stress of this material is high)		  and

	 (the density of this material is low)			   and

Then

	 (this material is a candidate for the accelerator pedal)

	 The knowledge-based system also contained a frame-based 
system which acts as a database for material properties and 
manufacturing process capability. A number of constraints in the 
material selection are represented inside the expert system using 
the rules in KEE. In this context material property criteria have 
been utilized as rules to approve constraints. Using the material 
properties’ rules, the designer can examine whether or not the 
proposed materials are suitable candidates using a particular 
component. For instance, if the designer specifies the material 
with specific modulus of elasticity (E

m
), in a frame-based system 

hierarchical graph, the system will compare this modulus of 
elasticity with the predefined modulus of elasticity limit:

E
m
  < E

max

	 Warning is given in the case of inconsistency or an invalid 
parameter using the constraint violation facility in KEE. 
Consequently, the material with this modulus of elasticity is singled 
out.
	 The work was extended to the selection of ceramic matrix 
composites for automotive engine components using the KBS tool 
kit, Kappa-PC (Sapuan et al., 2002). The selectioncriteria were 
based on pre-defined constraint values such as mechanical and 
physical properties.  
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Neural Networks

Today, neural networks (NN) or artificial neural networks (ANN) are 
used to solve a wide variety of complex scientific and engineering 
problems including materials selection. In fact, a neural network is 
a powerful mathematical tool for modeling material properties. A 
neural network is defined as a massive parallel-distributed processor 
made up of simple processing units, which has a natural propensity 
for storing experiential knowledge and making it available for use. 
It resembles the brain in two respects: i) knowledge is acquired by 
the network, from its environment, through a learning process, and 
ii) inter-neuron connection strengths, known as synaptic weights, 
are used to store the acquired knowledge (Aleksander and Morton, 
1990). 
	 Many studies have been carried out by researchers in solving 
composite material problems in the literature. Zhang and Friedrich 
(2003) reviewed the use of neural networks in the field of polymeric 
composite property prediction and design. Various principles of 
the neural network approach for predicting certain properties of 
polymer composite materials such as fatigue life, wear performance, 
response under combined loading situation, and dynamic 
mechanical properties were discussed. Bezerra et al. (2007) used 
neural networks to predict the shear stress–strain behavior from 
carbon fiber/epoxy and glass fiber/epoxy composites. Jiang et al. 
(2007) employed an artificial neural network technique to predict 
the wear properties of polymer-matrix composites; and Yang et al. 
(2003) proposed a genetically optimized neural network system to 
assist the decision maker in dealing with the composite material 
selection and operating conditions problem. 
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Case study

(This section is reproduced from Chapter 12 of a book edited by 
Sapuan and Mujtaba (2010) with permission from CRC Press, 
Boca Raton).
	 The book dealt with the topic of neural network application 
in polymer composites which gathered expertise  from USA, 
Australia, UK, Italy, Brazil and some other Asian countries (Sapuan 
and Mujtaba, 2010). In the final chapter of the book, Sapuan and 
Mujtaba (2010), presented work on the development of a prototype 
computational framework for selection of natural fibre reinforced 
polymer composite materials using the neural network. Figure 9 
shows the structure of the material selection system using ANN.

 

Figure 9  Structure of natural fibre reinforced composite material 
selection system

	 For the purpose of this research, the data were gathered from 
previous published work of the author and his co-workers carried out 
at Universiti Putra Malaysia. In addition, data from various journal 
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papers were also collated in order to enrich the database. A total 
of 121 datasets were gathered, which represent 121 different types 
of natural fibre composites (different combination of fibre weight, 
treatment method, fibre types and other parameters) for optimum 
neural network construction. For each material, the properties 
included in datasets selected were tensile strength, tensile modulus 
and flexural strength and the total datasets (S) are represented as: 

S = [ (I (i) , O (i) ) | i = 1, … P ]				    (1) 

P is the maximum number of datasets. The datasets were divided 
into training datasets (R), testing datasets (T) and validation datasets 
(V). 

The training datasets are:

R = [ (I (i) , O (i) ) | i = 1, … M]				    (2)

M is the maximum number of training datasets. 

The testing datasets are:

T = [(I (i) , O (i) ) | i = M+1, … N]				   (3)

N is the maximum number of testing datasets. 

The validation datasets are:

V = [(I (i) , O (i) ) | i = N+1,…P]				    (4)

	 where I (i)  is the ith input parameter and O(i) is the ith output 
parameter.
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	 In this study, approximately 50% of the total datasets are training 
datasets (M = 61 datasets), 30% for testing (N - M = 30 datasets) 
and 30% for validation ( P - N = 30 datasets). 
	 There are various challenges in obtaining comparable data of 
natural fibre composites such as:

1.	 	 Problems in obtaining complete sets of data on tensile strength, 
tensile modulus and flexural strength (many papers were 
excluded due to incomplete sets of data).

2.	 	 Fibre fractions were given both in weight and volume and it is 
not very clear whether the researchers were consistent in their 
definitions.

3.	 	 Insufficient information given in the papers such as no mention 
of fibre fraction, the length of fibre (for short fibre) etc.

	 As a result, big variations in data was observed, for instance the 
minimum value of tensile modulus in coir/polypropylene composite 
was 337 MPa and in jute/polypropylene composite it was 11590 
MPa and this caused the distribution to be biased towards the lower 
end value of the data. To minimize these variations as much possible, 
data were taken from previous works of the author.
	 The datasets (inputs and output) were stored in MS Excel 
software format and were normalized in the range of –1 and +1 
using the following formula to facilitate data training, testing and 
validation:

X
n
 = [2* (X-X

min
) / (X

max
 – X

min
)] – 1			   (5)

	 Where X
n
 is the normalized value of the parameters, and X

max
 – 

X
min   

are the minimum and maximum of variable X.
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Material selection requirements

It was obvious from the earlier data collection section that strength 
and modulus are the two main properties considered in the 
materials selection process for structural components. In fact it is 
an established fact in materials selection that strength and stiffness 
are often referred to as the materials selection drivers (Sapuan and 
Abdalla, 1998). Tensile strength is normally regarded as a very 
important property attribute, but in the case of the component under 
study, i.e. horizontal shelf, where the load is mainly that of bending 
in nature, the flexural strength of the materials is more significant 
and hence will become the output in the study. In addition, only one 
output parameter is fixed in this study because, as reported in Zhang 
and Friedrich (2003), majority of the work on neural networks in 
composite materials have only one output and to be consistent with 
them, this norm is followed. In a situation where load is applied 
to the shelf, the shelf has to sustain the constant load applied for a 
prolonged period and in such situation creep failure is significant. 
The study should consider such potential failure.
	 The parameters consist of numerical data (tensile strength and 
modulus, and flexural strength) and qualitative data (aesthetics, 
manufacturability, availability and cost). In this study, there was 
difficulty in obtaining comparable creep data for all the materials 
and therefore it is not included in the materials selection system. 
All the input and output parameters are broadly divided into three 
main categories to satisfy the materials selection requirements, 
namely functional, manufacturing and economic considerations.
	 As far as manufacturing requirements are concerned, the aspect 
of manufacturability and aesthetics are selected. Manufacturability 
here is referred to as the ease of accomplishing a certain 
manufacturing process to produce a particular material. If the 
manufacturing process is the manual hand lay up process, the 
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process is very easy to accomplish and the cost to produce the 
mould and sample is very low and hence, it is given high rating. 
As for the injection moulding process, the machinery is very costly 
and the process to produce the specimens is more complicated, and 
so the process is assigned lower rating based on a 5-point scale. 
Today, product design should consider both the engineering design 
aspect as well as industrial design aspect of a product. Issues like 
form, shape, colour, texture, ergonomics and aesthetics must also be 
given due attention. In line with this, the aesthetics of the product is 
selected as one of aspects considered in this study. It is categorised 
under manufacturing requirements because the aesthetics of a 
product is ensured during the manufacturing stage.
	 Under economic requirements, cost and availability are 
regarded as important. Direct material cost is very important in 
materials selection but up till today, there is no published work on 
cost comparison of natural fibre composites. Further, some of the 
materials can be obtained at no cost at all and they are regarded as 
agricultural waste. As a result, only related qualitative data can be 
provided. Availability can be regarded as indirect cost because, if 
the material is cheap but it is not available locally, the cost to import 
the material can be very high. Its being unavailable inhouse will 
result in high cost incurred. Once again actual data of such items 
is not available and only qualitative data can be provided.

First stage of material selection 

The MATLAB® neural network toolbox was employed in the 
development of a material selection system for natural fibre 
reinforced polymer composites. Neural network modelling is a 
non-linear statistical analysis method that is in the form of a ‘black 
box’. In this ‘black box’, input data and output data are connected 
by means of a set of non-linear functions. In this study, a fully 
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connected four-layer (one input, two hidden and one output layers) 
feed-forward network with sigmoid transfer functions is employed 
as shown in Figure 10. 

Figure 10   A typical structure of fully connected four-layer network

Data training

Before the neural network composite material selection system 
can be applied, the procedure for obtaining the neural network 
model, i.e. the forward model used in these strategies, are initially 
performed together as a method to train the system. 

Forward Modelling

The procedure of training a neural network to represent the 
dynamics of the system is referred to as forward modelling.  Forward 
modelling in this case refers to training the neural network model 
to predict the output of property at the next instant of time (t +1). 
Data used for development of the model is shown in Table 1.
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	 The correlation can be found by expanding the equation (equation 
6) shown in Tanvir and Mujtaba (2006). Similar architecture of this 
work is shown in Figure 11. Figure 12 shows the MATLAB output 
graph for the dataset used.

								        (6)

all the symbols shown here are similar to that of Tanvir and Mujtaba 
(2006).  

Figure 11  MATLAB training graph for the data used above
































































































































































































































