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ABSTRACT

Optical communications have been vigorously touted as the future 
of communications due to its many benefits such as amazing speed, 
enormous capacity and low transmission loss. The emergence of 
the optical wavelength-division multiplexing (WDM) scheme has 
further strengthened its position as the premier communication 
method to date. Nevertheless, optical communication is still 
hindered by a number of weaknesses, in particular the accumulated 
loss in long distance transmission and the need for multi-wavelength 
laser sources for WDM systems.	
	 The advent of various types of optical amplifiers strives to counter 
transmission attenuation in optical fiber. The two main players in 
the field are the erbium-doped fiber amplifiers and the Raman 
amplifiers, with their own individual advantages and weaknesses. 
Resourceful researchers have been able to combine both types to 
create hybrid amplifiers that enjoy the best features of both while 
downplaying their drawbacks. Additionally, the introduction of 
the remote pumping scheme has eliminated geographical and 
infrastructural obstacles which were strongly associated with optical 
amplifiers in the past.
	 The Optical WDM system necessitates the employment of a 
multi-wavelength laser source that can provide multiple channels 
at high output. Multi-wavelength fiber lasers have been able to fill 
this need very well by generating lasers with low noise and smaller 
channel spacing, which allows more channel per transmission. 
These fiber lasers have taken advantage of the scattering effect 
in optical fiber, mainly the Brillouin scattering which enables the 
generation of multiple laser channels with small spacing of 0.089 
nm. The integration of fiber lasers with erbium and modifications 
of the structure have allowed for a higher number of channels with 
wider tuning range. Such improvements have elevated the status of 



❚❘❘ 2

Lightspeed:  Catch Me If You Can

fiber lasers as an efficient and cost effective choice for deployment 
in optical WDM communications.
	 Optical communication has already displayed great ability 
at this early stage and promises even more. This lecture serves 
to portray the current state of the technology and the significant 
contributions that have led to its current prominence and promise 
of an outstanding future.
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INTRODUCTION

The North-South Expressway is the longest expressway is Malaysia, 
running 772 kilometers, from Bukit Kayu Hitam to Johor Bahru. 
If one were to drive along this expressway using the SSC Ultimate 
Aero, currently the fastest production car in the world, at the car’s 
maximum speed of 411 km/h, it would take approximately 1 hour 
and 53 minutes to traverse the entire highway. On the other hand, 
a light signal propagated through an optical fiber of similar length 
would require just slightly above 3.8 milliseconds to travel from 
end-to-end. A race between the light signal and the SSC Ultimate 
Aero would probably be over even before the engine of the RM 2.29 
million car has a chance to start! Such is the astonishing speed of 
light passing through an optical fiber, going as fast as around 200 
thousand kilometers per second at the fiber core. It is even more 
amazing when you take note that the optical signal is actually 
already impeded by the refractive index of the fiber material which 
lowers its original speed in a vacuum (around 300,000 km/s).

Nevertheless, speed alone will not give optical communication 
an advantage over its predecessor, electrical signals over copper 
wires. In reality, electrical signals passing through a copper wire 
is only marginally slower than an optical signal via optical fiber. 
What makes optical transmission so vigorously hyped as the future 
of communication is its huge bandwidth and low attenuation. Fiber 
optics is capable of transmitting data in excess of 10 Gbps, dwarfing 
the meager 1.54 Mbps data provided by a single copper wire. As 
a matter of fact, just recently in 2010 the record for fiber capacity 
was broken, when researchers achieved up to 69.1 Tbps on a single 
optical fiber over a distance of 240 km [1]. Its advantage in terms 
of bandwidth can also be looked at from another aspect, which is 
its size. Due to its amazingly small and lightweight form (thinner 
than a strand of human hair), a single fiber optic strand can transmit 
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the same amount of data equivalent to 33 tons of copper cables. Its 
small size also allows for easy handling, making fiber installations 
and repairs considerably easier.

Apart from the extremely high bandwidth, fiber optics also 
possess very low and constant attenuation. A single-mode fiber has 
maximum attenuation of around 0.4 dB per km while typical copper 
wire attenuation is measured in dB per meter and is also directly 
proportional to the frequency of the transmission. This means that 
at a distance of only a few hundred meters, an electrical signal could 
already be subjected to a sizeable amount of attenuation and the 
attenuation escalates with higher frequency. In contrast, an optical 
signal of any wavelength can propagate up to tens of kilometers 
without suffering any substantial loss of power. 

These features are not the only advantages of optical 
communication. Invulnerability to electromagnetic interference, 
secure data transmission and no risk from high voltage transmissions 
are just a few of the numerous other beneficial traits of optical fibers. 
What makes it so much more appealing is that current researches 
are only at the tip of the iceberg. There are many facets of optical 
communication that have yet to be explored and discovered. 
Limitation of transmission span due to accumulation of fiber loss 
has triggered the advent of optical amplifiers, which boost the 
distance between spans by up to several hundred kilometers. The 
demand for higher capacity brought about optical wavelength-
division multiplexing (WDM), consequently generating the need 
for multi-channel laser sources. Both innovations are fast-growing, 
emerging technological fields in which various opportunities for 
research exist. 
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HISTORY OF OPTICAL FIBERS

Due to the fact that light basically travels in a straight line, a 
receiver needs to be in line-of-sight to the transmitter in order to 
successfully receive the signal. Unfortunately, the world does not 
comprise of flat and unobstructed land and thus a way to bend light 
around corners and turns is needed if optical communication is to 
be realized. In the past, scientists have experimented with the use of 
mirrors and special tubes but none of these methods were practical 
enough to warrant serious attention. This, however, changed when 
John Tyndall rose to prominence. Tyndall is an acclaimed physicist 
credited as the founder of the science of light scattering. In 1870, 
Tyndall demonstrated to the members of the prestigious British 
Royal Society how a light beam can be confined and guided. In the 
said demonstration, Tyndall let out a stream of water from a tank 
into a collection pan placed on the floor. He then directed a bright 
light into the stream of water where it was seen that the light beam 
was trapped and traveled in a zigzag path within the curved path 
of the water until it reached the collection pan below. 
	 Tyndall’s finding later became the basis for the creation of the 
optical fiber, which took 82 years to be accomplished. The inventor 
was Narinder Singh Kapany, an Indian born American physicist 
who was dubbed “The Father of Fiber Optics”. During his younger 
days, he was vehemently told by a teacher that light can only travel 
in straight lines. Kapany felt that the statement was inaccurate 
and from that day onwards he was obsessed with finding a way 
to bend light. Kapany eventually succeeded in 1952, creating the 
first practical all-glass fiber, and also coining the term ‘fiber optic’. 
Kapany’s primary objective of devising the fiber optic at that time 
was for the medical endoscope and thus not many other uses were 
developed for fiber optics particularly due to the extremely high 
loss in the fiber. 
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OPTICAL FIBER COMMUNICATIONS

Until 1966, it was unthinkable to utilize f iber optics for 
communication purposes due to the high attenuation of light 
signals propagating in the fiber, which severely limited the distance 
of optical transmissions. Researchers at the time attributed this 
drawback to the presence of fundamental physics phenomena 
such as scattering. Charles K. Kao however, suggested that the 
high attenuation problem was largely due to impurities present in 
glass used in the fiber. The removal of such impurities would allow 
optical signals to propagate in long distance optical fiber, thereby 
making it suitable for communications. The results validating this 
theory were published in January and July 1966 by Kao and his 
counterpart, George Hockham. Kao’s work was rewarded with 
half a Noble Prize in 2009 and earned him the nickname ‘Father 
of Optical Communication’. This breakthrough opened up a new 
paradigm in optical fiber communications and the race to fabricate 
low loss optical fibers  began. 
	 In 1970, Corning Glass Works announced its success in 
producing low loss fibers with less than 20 dB/km [2]. Later 
another important accomplishment was reported by a group at 
Bell Laboratories, where an optical fiber with 1.1 dB/km loss was 
successfully fabricated [3]. Advancements in technology have 
enabled the fabrication of optical fibers with losses of around 0.22 
dB/km, that are suitable for communications. 
	 In order to satisfy bandwidth hunger, WDM technology 
was introduced and has emerged as the champion in providing 
high-capacity transmission systems as shown in Figure 1. The 
fascination with WDM stems from its use of individual segments 
of the optical spectrum to multiplex channels into a single strand 
of fiber, as illustrated by spectrum A in Figure 1(a). As a result, the 
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total bandwidth is the product of each individual signal multiplied 
by its data rate. Due to this, the bandwidth can be easily tailored 
by controlling the number of signals with regard to availability 
of the amplification band. After these signals are combined via 
multiplexer, their power levels are amplified by optical amplifier 
before propagating into a few tenths (up to hundredths) kilometer of 
fiber optic (spectrum B). Owing to the nature of material absorption, 
bending and scattering losses in optical fibers, the initial signal power 
level cannot be sustained at the end of each fiber span as indicated 
by spectrum C. Thus, the signals must be further amplified to boost 
their power before experiencing another cycle of propagation loss 
in the subsequent fiber span. This superior multiplexing technology 
merged with sophisticated optical amplification comprising of rare-
earth doped fiber amplifiers and Raman amplifiers have resulted in 
Terabits transmissions as summarized in Figure 1 (b).

(a)
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(b)

Figure 1   (a) Typical WDM transmission system and (b) evolution of 
ultra high bit rate transmissions from the year of 2000 up to date.

	 Figure 1, shows that since the year 2000, there has been 
exponential growth in the trend of successful experiments on ultra 
high bit rate transmission. Within this period, the total transmission 
rate has elevated from 7 to 69 Tbit/s. The advancement of these 
transmission systems was supported by rapid development of 
amplifiers and also signal modulation schemes. The current 
world record holder (69 Tbit/s) utilizes as many as 432 channels 
at 171 Gbps (data rate per channel) with wideband amplifiers of 
approximately 88 nm bandwidth [1].
 

OPTICAL FIBER AMPLIFIERS

Optical f ibers, one of several kinds of transport media for 
telecommunications, can carry an enormous amount of information 
for broadband applications between widely separated transmitters 
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and receivers. Although low transmission loss is the main advantage 
of optical fibers over other transport media, regeneration is still 
needed to compensate for transmission losses in long haul point-
to-point transmission systems and for splitting losses in networking 
systems. In 1987, the discovery of erbium-doped fiber amplifiers 
(EDFAs) cultivated a new dimension of signal amplification in 
optical fibers [4]. In addition to this discovery, breakthrough 
research in multiple wavelengths transportation riding on EDFA 
has nurtured the most powerful technology in the history of optical 
fiber communications; renowned as the WDM system.
	 The first analysis of rare-earth doped fiber was demonstrated 
by C. J. Koester and E. Snitzer [5] in 1964, using Nd3+ as an 
active material. The analysis of erbium-doped fiber as a laser and 
an amplifier was demonstrated in 1987 [4, 6] and since then, the 
development of the erbium-doped fiber has been extensively studied 
[7-19].

Principle of  Optical Amplification

Erbium is one of the rare-earth materials that have been investigated 
for the purpose of optical amplification. For rare-earth doped 
fiber amplifiers, the fiber core is doped with erbium that has the 
appropriate energy levels in their atomic structures to amplify light 
within a low-loss transmission window of optical fibers.
	 For doped glass, each free ion of erbium exhibits discrete 
energy levels. The energy level refers to an amount of particular 
energy contained by the ion either corresponding to absorbtion 
or emission of the energy. Amplification in erbium doped fiber is 
closely related to changes in the energy level of the erbium ions. 
Absorbing energy will increase its energy level and vice versa for 
emitting energy. In amplification terms, emitting light is associated 
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with emitting photons. Figure 2 shows the fundamental interactions 
of light with matter. The amplification energy is injected by external 
pump sources (electrical or optical) through an absorption process 
as illustrated in Figure 2(a).

	 On the other hand, emission can occur in two ways:

A spontaneous emission where excited ions return to the lower i.	
energy level in a random manner as depicted in Figure 2(b). 
According to quantum mechanics theory, spontaneous emission 
always involves transition from a higher energy state to a lower 
energy state. The emitted spontaneous emission becomes the 
noise generated by the amplifier and is referred to as amplified 
spontaneous emission (ASE).

As shown in Figure 2(c), when a photon having energy equal ii.	
to the energy difference between E

2
 and E

1
 interacts with the 

atoms in E
2
, causing them to return to E

1
 along with the creation 

of more photons, it is called ‘stimulated emission’. Photons 
produced by this process generally possess identical energy to 
the ones that caused it and hence, the light associated with them 
is of the same frequency, phase and polarization. 
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Figure 2  Schematic representations of absorption and emission 
between energy level 1 and 2:   (a) absorption (b) spontaneous emission 

(c) stimulated emission. 

	 Figure 3 shows possible energy levels for Erbium ions as well 
as possible pumping bands. Absorption of pump photons excites 
erbium ions to higher energy states. At higher energy levels, the ions 
may dissipate energy radiatively by releasing photons or converting 
the energy into heat. According to ion energy structure, a number 
of Stark levels are present at any particular energy level. Each 
ion experiences a different field strength and orientation due to 
randomness in the glass molecular structure, resulting in different 
Stark-splitting. The splitting causes a large gain bandwidth of 
rare-earth doped fiber amplifier. The number of Stark split lines 
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for each level are 7 and 8 for 4I
13/2

 and 4I
15/2

, respectively, resulting 
in 56 possible transitions between those lines spreading across a 
1550 nm band at low temperature.

Figure 3  Energy levels of erbium ions with possible pump bands.

	 At 300 K temperature, the bands overlap sufficiently for smooth 
and continuous transition. The increases in energy gap between 
levels will also increase the tendency of photon radiation when 
jumping to lower energy levels. Thus the transition between 4I

13/2
 and 

4I
15/2

 is predominantly radiative resulting in the 1550 nm wavelength 
region. Spectroscopy studies on erbium glass show that pump 
wavelengths at 520, 620, 800, 980 and 1480 nm can be utilized for 
amplification. Availability and maturity of pump laser diodes for 980 
and 1480 nm lead these pump wavelengths to be widely deployed. 
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The 980 nm pump band offers low noise characteristics but also 
requires stringent requirements of pump wavelength accuracy due 
to its narrow absorption band. However, this problem was rectified 
when the pump wavelength was locked to the specified wavelength 
through the advent of fiber Bragg gratings [20]. On the other hand, 
the 1480 nm pump laser has better power conversion efficiency 
though it is at the expense of power consumption requirements 
[21]. 
	 Referring to Figure 3, discrete energy values are separated by 
energy gaps, which follow the law of quantum physics whereby the 
transition of atoms between energy levels occurs discretely. Ground 
level E

1
 (4I

15/2
) indicates the lowest level and E

2
 (4I

13/2
) indicates the 

first level. The difference of energy ΔE, at which the atom moves 
from upper to lower level, releases photons as a quantum of energy. 
The photon carries energy of  Ep and is defined as [21];

		  Ep = hf = E
2
 – E

1				                  
(1)

	 E
2
 and E

1
 refer to the atom’s discrete energy during transition 

between levels, where h = 6.626 x 10-34  J.s  is a Planck’s constant 
and photon frequency denoted by f. Changes of atomic energy 
levels from lower to higher levels require external energy. The atom 
absorbs this energy and jumps to the higher level. The process of 
providing an atom with external energy, referred to as pumping, is 
depicted in Figure 4(a). 
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Figure 4  Atom with respective energy levels (a) light absorption and 
(b) light emission.

	 Initially the atom relaxes at E
1 
which is the lowest energy level. 

Applied external energy is absorbed by the atom, causing it to jump 
to an upper level, E

2
. This condition is known as light absorption. 

By nature an atom always tries to get to its lowest possible energy 
level. Figure 4(b) shows light emission occurring when the atom 
goes down from E

2
 to the lower energy level and emits photons.

Population Inversion

In atomic systems with thermal equilibrium, the atom density 
in each energy level obeys the Boltzmann distribution given  by 
Desurvire [21];
				  

(2)

	 N
1
 and N

2
 are atom densities for energy levels E

1
 and E

2
 

respectively, K is the Boltzmann constant, T is the absolute 
temperature, f is the frequency and h is Planck’s constant. According 



15 ❘❘❚ 

Mohd Adzir Mahdi

to the above equation, N
2
 is much smaller than N

1
 in a normal atomic 

system at thermal equilibrium. Hence, the absorption is dominant 
compared to the spontaneous/stimulated emission. 
	 A condition where thermal equilibrium is achieved is where 
the lower level energy contains more atoms than the upper level, 
at room temperature. A non-equilibrium distribution of atoms 
where a population of atoms at upper energy level is greater than 
the lower is necessary to have optical amplification. The condition 
is commonly known as population inversion, with N

2
 > N

1 
where 

both N
2
 and N

1 
represent the density of atoms in energy levels E

2
 

and E
1
. Through population inversion, N

2 
will become much larger 

than N
1
, resulting in a system with dominant stimulated emission. 

Population inversion is achieved by injecting power into the system 
through an external energy source, which is known as pumping, as 
described previously. 

Spectroscopic Properties 

Understanding absorption characteristics is important to study 
potential pump wavelengths for the erbium ion as shown in Figure 
5 [22]. Erbium ions have absorption transition of photon energy 
for wavelengths at 520, 620, 800, 980 and 1480 nm. However, 
the 980 and 1480 nm pumping bands are widely used due to their 
technological maturity. Furthermore, these pumping bands are more 
suitable for single-mode signal propagation in optical fibers.  
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Figure 5  Absorption spectrum of erbium ion in silicate glass [22].

The typical optical properties are shown in Figure 6 for the 980 
nm absorption band and the 1550 nm absorption/emission bands. 
The 980 nm absorption peaked at 978 nm with Lorentzian-like 
response, as depicted in Figure 6(a). Since there is no emission 
transition within the 980 nm wavelength range, all the excited 
atoms are available for amplifications, which is normally considered 
as full inversion. However, as seen in Figure 6(b), there is an 
emission transition in the 1480 nm band, making the condition of 
full inversion impossible. This contributes to the deterioration of 
amplifier noise pumped by the 1480 nm pumping band. Despite 
this drawback, the amplifier performance is also dependent on the 
power conversion efficiency where the 1480 nm pumping is much 
better than the 980 nm pumping. 
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Figure 6   (a) Absorption coefficient of 980 nm band and (b) emission/
absorption coefficient of 1550 nm

Pumping Scheme

The erbium-ion is described through the energy level diagram 
shown in Figure 7(a). When pumping at 980 nm, the EDFA acts as 
a three-level laser system. This means that the Er3+ ions are excited 
from the ground state level (4I

15/2
) to a third level (4I

11/2
) from which 

it rapidly decays, mainly non-radiative emission to a lower energy 
level (4I

13/2
) metastable state with relatively longer lifetime. For a 

two-level laser system, normally the erbium-doped fiber (EDF) is 
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pumped by 1480 nm pump lasers. Figure 7(b) depicts the emission 
of green fluorescence when the EDF is pumped by 980 nm pump 
lasers. This effect is known as excited state absorption, whereby 
the pump light is not only absorbed from the ground level (4I

15/2
) 

but also from an excited state level (4I
11/2

) due to the existence of 
a third energy level with an energy gap between these two levels 
closely matching the pump photons energy. Then, these excited ions 
naturally drop to ground level to release photon energy of around 
510 nm (green light).  

(a)

(b)

Figure 7  (a) Pumping scheme of erbium-doped fiber; three- and two-
level laser systems and (b) green fluorescence from EDF pumped with 

980 nm light.
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Amplifier Configuration in Transmission Systems

The invention of EDFA transformed the landscape of optical 
transmission systems. Figure 8 shows specific applications of 
EDFA in typical optical transmission systems which correspond to 
distinct operating regimes of the EDFA. Practically, there are three 
regimes: small signal regime for pre-amplifiers, saturation regime 
for in-line amplifiers and deep saturation regime for high power 
amplifiers. The location of an amplifier depends on the intended 
application in a specific transmission system. Thus, the pre-amplifier 
is located just before a receiver (Rx) where the input signal level 
is extremely low and accordingly the pre-amplifier is designed to 
have an extremely low noise figure. An in-line amplifier, which is 
located between the transmitter (Tx) and receiver along the trunk 
fiber lines, normally has characteristics of high gain, high output 
power and low noise figure. Finally, power amplifiers are designed 
mainly to boost the input signal power from Tx so as to provide 
very high output power for long haul transmission systems and are 
located just after a transmitter.

	Figure 8  Applications of EDFA in a standard optical fiber transmission 
system.

	 Besides conventional designs of EDFA, there is another type 
of optical amplifier. This class is called a remotely-pumped EDFA 
(R-EDFA). The R-EDFA surmounted the geographical obstruction 
problem faced by the discrete pump EDFA and enabled utilization of 
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longer span length. The difference between the discrete pump EDFA 
and R-EDFA is that the pump no longer needs to be in proximity 
with the EDFA. In R-EDFA architecture, the pump can be located 
at either the transmitter or the receiver. A schematic drawing of the 
repeaterless optical transmission system setup is shown in Figure 
9. This configuration includes most of the technologies that have 
enabled significant progress in transmission distance. 
	 A post EDFA boosts the signal level to launch it into post-length 
fiber span. The boosted signal is also amplified by a distributed 
Raman amplifier (DRA) which is the natural cause of nonlinear 
effect in optical fiber when the pump power is above a certain 
threshold value. A post R-EDFA is located after this section of 
fiber for additional signal amplification. Figure 9(a) shows signal 
power evolution, represented by a dashed line along the transmission 
distance, using forward DRA and R-EDFA. On the other hand, a 
pre-R-EDFA can also be located closer to a receiver as depicted in 
Figure 9(b). In this configuration, the backward DRA is utilized to 
improve signal power for better detection level at Rx.

(a)
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(b)

Figure 9  Signal power evolution experienced by (a) forward DRA and 
Post R-EDFA, and (b) backward DRA and pre R-EDFA.

	 Figure 10 illustrates the progression of a repeaterless system 
employing several configurations of remotely-pumped optical 
amplifiers. The longest achievable transmission system is possible 
with the inclusion of the effect of distributed Raman amplification 
as depicted in Figure 10(g).  

Figure 10  Various configurations of repeaterless transmission systems.
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Optical Amplifier Architectures

Basically, an EDFA can be constructed using three different 
configurations as shown in Figure 11. The pump laser used is either a 
980 or 1480 nm laser diode (LD) to inject energy for ions excitation 
to create population inversion in a length of erbium-doped fiber 
(EDF) for amplification. Wavelength selective couplers (WSCs) 
are utilized as pump and signal light multiplexers/demultiplexers. 
These couplers are made using fused fiber technology. Isolators 
are deployed as a unidirectional component which allows one-
way direction of light while blocking any light from the opposite 
direction. 

(a)

(b)
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(c)

Figure 11  EDFA can be designed in (a) forward-pumped, (b) 
backward-pumped and (c) bi-directionally-pumped configurations.

	 The forward-pumped configuration is defined as that where the 
pump and signal lights propagate in the same direction along the 
erbium-doped fibers, whereas the backward-pumped configuration 
is constructed such that the pump and signal lights propagate in 
the opposite direction. On the other hand, the bi-directional pump 
scheme utilizes two pump lasers at both ends of the EDF where the 
propagating signal encounters pump lights in both directions.

Optical Amplification Band

Fiber attenuations play an essential role in determining the 
assignment of optical band in transmission systems. Optical signals 
experience loss mainly due to material absorptions and scatterings. 
A typical fiber attenuation curve (solid line) is shown in Figure 
12 where there is an absorption peak of around 1400 nm owing 
to strong absorptions of O-H ions. Advancement in optical fiber 
technology has led to the development of new fiber types which 
suppress the OH peak, as represented by the dashed line illustrated 
in Figure 12. This breakthrough has enabled data transmission from 
1290 to 1700 nm (410 nm bandwidth). Referring to Figure 12, band 
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allocations for these transmission windows are namely O, E, S, 
S+, C, L and U bands. In order to rectify this attenuation problem, 
optical amplifiers are needed to cover the whole transmission band. 
Practically, the praseodymium-doped fiber amplifier (PDFA) covers 
O-bands from 1290 to 1320 nm. Thulium-doped fiber amplifiers 
(TDFAs) are utilized to amplify signals from 1420 to 1500 nm (S- 
and S+-band). Finally, EDFA can be used to combat attenuation in 
the range of 1500-1620 nm [11, 23, 24]. Apart from rare-earth doped 
amplifiers, Raman fiber amplifiers (RFAs) can also be designed to 
operate in a wide range of transmission windows, subject to the 
availability of pump lasers [25-28]. 

Figure 12  Transmission band assignment with respect to fiber 
attenuation and available optical amplifier technologies.

	 Since the amplif ication bandwidth of EDFA is perfectly 
overlapped with the lowest attenuation window of optical fibers, 
this enabling technology continues to be extensively investigated. 
Together with Raman amplifiers, these two amplification gadgets 
shape the landscape of optical communication industries around 
the globe.   
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WIDEBAND OPTICAL AMPLIFIERS

In optical fiber communications, WDM systems are the enabling 
technology to increase transmission capacities. This allows the 
capacity of a single fiber to be increased while managing both 
component performance and optical impairments that limit 
amplifier spacing and total link length. Additionally, higher optical 
channel counts may extend the economic benefits of managing 
traffic in the optical layer by providing access to signals at a finer 
level of granularity. Hence, optical amplifiers must be able to cope 
with the requirement of having a higher number of channel counts. 
In this case, broadband optical amplifiers are the essential optical 
engine to support WDM systems especially in the wavelength range 
of C- and L-bands.
 

C-band Optical Amplifiers

Acquiring high gain in the C-band transmission window is simpler 
owing to the fact that the erbium emission spectrum is substantially 
high in that region, as seen in Figure 6(b). The drawback in C-band 
amplification is that the difference in the emission spectrum across 
the C-band region is significantly high which generates a ‘hump’ 
(around 1530 nm) in the amplification spectrum, as depicted in 
Figure 13. This in turn causes variation in the gain experienced 
by the signals in multi-channel transmission. The effect of 
dispersion in optical fiber has to be considered as well, since longer 
transmission distance will lead to higher accumulated dispersion. 
While the existence of dispersion is welcome in some ways; 
particularly in reducing the effect of four-wave mixing in WDM 
systems, uncontrolled dispersion will cause severe distortion to the 
transmitted signals, rendering the data incomprehensible.
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Figure 13  Typical gain spectrum of C-band EDFA.

	 The use of amplifiers in optical communication systems has to 
take into account the problems due to the said effect. Referring to 
Figure 14(a), the amplifier design consists of four amplifier stages 
that distribute losses of three core optical devices: dispersion 
compensating module (DCM), variable optical attenuator (VOA) 
and gain-equalizing filter (GEF). The DCM is used to compensate 
for the accumulated fiber dispersion within a transmission span. 
Since the loss of DCM has variations, thus the maximum allowable 
mid-stage loss is fixed at 10 dB. This is critical in order to maintain 
the gain-flattened operation of the amplifier. On the other hand, the 
VOA is utilized to vary the operating gain-flattened value from 15 
dB to 30 dB, and finally the GEF is employed to have a flat gain 
with tolerance of about + 0.75 dB. The transmission spectrum of 
the GEF is shown in Figure 14(b). The maximum loss of the GEF 
is about 11 dB around the 1557 nm wavelength range. In general, 
the transmission spectrum of GEF is matched to the inverted gain 
spectrum of the amplifier.
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(a)

(b)

Figure 14  (a) Block diagram of the 4-stage Erbium-doped fiber 
amplifier and (b) transmission spectrum of GEF used in the 4-stage 

EDFA.

	 The commercial prototype of this high end amplifier is depicted 
in Figure 15(a). The package consists of four separate pump lasers 
that are located at the corners (white arrows) to allow efficient 
heat distribution as shown in Figure 15(b). There are two separate 
electronics boards to control the entire operation of the optical 
amplifier.
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(a)

(b)
Figure15  (a) Commercial prototype of the gain-flattened EDFA and 

(b) the electronic boards used to operate as the intelligent engine.

	 Referring to Figure 16, four different gain levels (15, 20, 25 and 
30 dB) are measured from the gain-flattened EDFA. In addition, 
the extreme signal condition is tested by taking the input power 
equivalent to the minimum and maximum signal powers for each 
gain level. The average signal gain at the desired gain value was  
successfully obtained without any significant power penalty from 
the broadband noise of ASE. This was achieved by implementing 
our unique algorithm of ASE correction. This algorithm is very 
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useful to compensate for the contribution of ASE on the amplified 
signals [29]. The gain variation of signals is due to the profile of 
GEF used in the 4-stage EDFA. For the 15 dB operating gain, the 
signal gains from 1530.33 nm to 1531.90 nm are slightly higher 
than the rest of the signals. This phenomenon is due to the effect 
of spectral hole burning as reported in [9, 30]. 

Figure 16  Gain performance of 4-stage EDFA with ASE compensation 
algorithm [29].

	 The output spectra of the variable gain-flattened EDFA are 
depicted in Figure 17. In this case, the total input powers are -19 
and -26 dBm, and the operating gain is fixed to 30 dB. The output 
spectra are exceptionally flat even though the input signal power 
variation is applied to the amplifier. The developed algorithm is 
able to handle the power penalty problem induced by internally 
generated ASE.
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Figure 17  Output spectrum at 30 dB gain with (a) -19 dBm total signal 
power and (b) -26 dBm total signal power [29].

	 The wideband EDFA of 35 nm can be extended to 38 nm as 
shown in Figure 18. The wavelength range is from 1528 to 1566 
nm and the operating gain is 28 dB. The impact of having broader 
amplification bandwidths is the transmission loss of GEF. This 
invites additional engineering problems in GEF fabrication and 
higher internal gain of EDF by increasing the length of active gain 
medium and also its pump power requirements.  

Figure 18  Output spectrum of gain-flattened EDFA at 28 dB gain with 
38 nm amplification bandwidth. 
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L-band Optical Amplifiers

The rise of the WDM system in optical communications has 
increased the demand for more bandwidth, leading to the addition 
of the L-band transmission window. The use of the L-band region 
for optical transmissions has eliminated several problems associated 
with the C-band region, such as the uneven gain spectrum and the 
existence of four-wave mixing in systems utilizing dispersion-
shifted fiber.
	 Figure 19 shows a schematic diagram of L-band amplification 
in a long coil of EDF length. Strong ASE of 1550 nm is generated 
by 980 or 1480 nm band pump light at the input portion of the fiber. 
Due to the inadequate pump power for this long fiber, the 1550 nm 
band ASE is absorbed and emits longer wavelengths in the L-band. 
The gain band shifts from the 1550 nm band to the 1580 nm band 
with increment of EDF length. Thus, energy of long wavelengths 
is accumulated along the fiber length and is more pronounced if 
there is a lack of pump energy. A long fiber is needed because the 
gain coefficient of the L-band is smaller than that in the C-band. 
Similarly, EDF can be highly doped with erbium ion concentrations 
in order to get the same effect [31].

Figure 19   Schematic diagram of L-band amplification.
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	 The L-band operating region falls at the edge of the erbium 
amplification window as shown in Figure 6(b). In this region, the 
absorption and emission coefficients are much lower as compared 
to the peak wavelength region of around 1530 nm. Unfortunately, 
these low coefficients cause low net gain coefficients. Therefore high 
inversion is required to obtain high-gain operations. However, in 
sustaining high inversion in this region, the flat-gain property of the 
L-band cannot be utilized. In order to relate the gain coefficient and 
level of inversion, a simple mathematical derivation is performed 
as follows:

	        G
C 

(λ) = g(λ)N2 – α (λ)N1				                 (3)

	 where G
c
 is the gain coefficient, g is the emission coefficient,  

α is the absorption coefficient and N
1,2

 is the fractional ion density 
at level 1 and 2 respectively. However,

	         N1 = 1 – N2					             (4)	

and yields,

            G
C  

=
 
(g(λ) + α(λ) )N2 – α(λ)			           (5)

	 where N
2
 is known as the inversion factor that can take on values 

in the range of 0 – 1. Then, gain coefficient versus wavelength is 
plotted as shown in Figure 20(a), in order to make use of the inherent 
flat-gain response of the L-band, where the average inversion along 
the fiber should be maintained at around 40%. The nominal output 
spectrum of the L-band amplifier under these conditions is depicted 
in Figure 20(b)
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(a)

(b)

Figure 20  (a) Gain coefficient spectra at different inversion levels 
in L-band and (b) typical gain spectrum of L-band EDFA at 40% 

population inversion.

	 It can be seen that signal wavelengths cannot exceed 1605 nm 
in order to have good gain flatness in the L-band. The L-band gain 
coefficient of about 0.26 dB/m is 6 to 8 times lower than that in 
the C-band region. Hence, longer lengths of EDF are needed to 
obtain reasonably flat-gain values. As an example, if a 100 m long 
EDF is used, the flat-gain value is around 26 dB. Since the length 
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requirement for the L-band amplification is significant, research 
activities have been centered on gain enhancement techniques for 
the L-band, as summarized in Table 1.

Table 1  Significant reports on techniques to improve L-band gain

Method Brief description Year Ref.

Reflective 
amplifier

Insertion of fiber Bragg gratings to 
reflect the input signal back into the gain 
medium for another amplification trip.

1996 [32]

Internal C-band 
seeding

Employment of fiber Bragg grating to 
reflect a portion of backward ASE back 
into the EDFA and to act as a secondary 
pump.

1998 [33]

Passive EDF
A section of passive EDF placed to 
utilize backward ASE from the L-band 
amplifier.

1999 [34]

Pump detuning
Detuning of 980 nm pump to avoid peak 
absorption wavelength and enhance 
power conversion efficiency.

1999 [35]

Backward ASE 
pumping

A feedback system is implemented in a 
dual-stage amplifier where the backward 
ASE from the first amplifier is fed to the 
second amplifier for pumping purposes.

2001 [13]

Internal C-band 
seeding

Employment of ring-cavity laser 
structure to convert backward ASE to 
C-band seed.

2001 [36]

Internal C-band 
seeding

Employment of linear-cavity laser 
structure to convert backward ASE to 
C-band seed.

2001 [37]

C-band 
pumping 
scheme

The use of 1530 nm pumping band 
for L-band amplifier to increase gain 
coefficient.

2001 [38]
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Broadband 
reflective 
amplifier

Employment of double-pass 
amplification of L-band signals to 
reduce the EDF length.

2001 [39]

Advanced glass 
materials

Phosphorous silicate glass for extended 
L-band amplification.

2002 [40]

Advanced glass 
materials

Antimony silicate glass for broader 
amplification in L-band.

2002 [41]

Advanced glass 
materials

Bismuth glass host is used for higher 
erbium ion concentration.

2003 [42]

Advanced fiber 
design

The modification of fiber geometry to 
enable cladding-guided pump light.

2003 [43]

Hybrid EDF/
Raman amplifier

Remote EDFA combined with Raman 
effect for higher cumulative gain.

2003 [44]

	 The application of L-band EDFAs for wideband amplification is 
quite interesting because it can offer wider bandwidths as compared 
to its counterpart the C-band [45]. Therefore, new transmission 
networks can be deployed using this extended L-band as a result 
of more channels being available to support WDM systems. The 
amplifier architecture of the extended L-band (43 nm) is depicted 
in Figure 21(a) [17].
	 A dual-stage amplifier structure is used with midway isolators 
and GEF. 1480 nm pump lasers are chosen due to the fact that 
the 1480 nm pumping scheme produces better power conversion 
efficiency when compared to the 980 nm pumping scheme. Since 
the extended L-band amplifier is designed to operate in conjunction 
with Raman amplifiers, the input signal powers into this amplifier 
are high. Thus, the 1480 nm pump lasers are used because of their 
higher power conversion efficiency that translates to higher gain 
values. The isolator in the middle functions to avoid reflection of 
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the detrimental backward propagating ASE from the second-stage 
amplifier. 

(a)

(b)

Figure 21 (a) Configuration of extended L-band amplifier and (b) its 
engineering prototype. 

	 The gain of 13 dB with gain flatness of less than 1 dB is achieved 
using the GEF made from the fiber Bragg grating technology 
as depicted in Figure 22. The output power is 20 dBm. Power 
conversion efficiency of 25.6% is obtained from the proposed 
amplifier structure, higher than the 18.4% reported in [46]. For 
extended L-band EDFA, widest bandwidth of 55 nm was reported 
with the use of advanced materials, in year 2000 [47]. 
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Figure 22   Flat-gain response against wavelength at different input 
powers from 3dBm to 7dBm, the gain-control value is fixed at 13dB 

[17].

	 Figure 23 shows the impact of the four-wave-mixing (FWM) 
product in the amplifier system. The total signal power is set at 4 
dBm and the output power is 17 dBm. The signal at 1586.96 nm is 
turned-off in order to observe the presence of the FWM product. 
The difference between the peak signal and the FWM product was 
around 43 dB. Since the length of EDF is only 40 m, the effective 
length for nonlinear interaction is reduced significantly.

Figure 23  FWM component at 1586.96 nm for input power of 4 dBm 
and the total output power of 17 dBm [17].
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Raman Fiber Amplifiers

Raman amplification in optical fibers was first demonstrated by 
Stolen and Ippen in 1972 [48]. However, lack of efficient power 
conversion or high power pumps throughout the 1970s and the first 
half of the 1980s, caused Raman amplifiers to remain primarily 
as laboratory curiosities. In the mid 1980s, many research papers 
looked into the promise of Raman amplifiers, but this was overtaken 
by interests in EDFAs. In the mid 1990s, there was an abrupt 
increase of interest in Raman amplification. This trend was due to 
the increased understanding of Raman efficiency with respect to 
gain media and fiber optics, and the arrival of more efficient, high 
power optical pumping lasers in conjunction with the exploding 
growth of WDM transmission systems [25].
	 The Raman scattering process becomes stimulated if the pump 
power exceeds a threshold value. Stimulated Raman scattering 
(SRS) can occur in both forward and backward directions in optical 
fibers. Physically speaking, the beating of the pump and scattered 
light in these two directions create a frequency component at the 
beat frequency

 
ωp - ωs, which acts as a source that derives molecular 

oscillations. Since the amplitude of the scattered wave increases in 
response to these oscillations, a positive feedback loop sets in. 
	 The spectrum of Raman gain depends on the decay time 
associated with the excited vibrational state. In the case of optical 
fibers, the bandwidth exceeds 10 THz. Figure 24 shows the Raman-
gain spectrum of silica fibers. The broadband and multipeak nature 
of the spectrum is due to the amorphous nature of glass. More 
specifically, the vibration energy levels of silica molecules merge 
together to form a band. As a result, the Stokes frequency ωs  can 
differ from pump frequency ωp over a wide range. Maximum gain 
occurs when the Raman shift ΩR ≡ ωp – ωs  is about 13 THz.
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(a)

(b)

Figure 24  (a) Raman gain spectrum of fused silica at pump wavelength 
of 1µm [49] and (b) experimental result of SRS and its pump light at 

1455 nm.

	 For SRS, the incident pump photon gives up its energy to create 
another photon of reduced energy at a lower frequency, while 
the remaining energy is absorbed by the medium in the form of 
molecular vibrations (optical phonons). The energy level diagram is 
represented in Figure 25. This virtual state energy can occur in any 
glass medium that creates the benefits of Raman amplification in 
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optical communication systems. Thus, any transmission fibers can 
be utilized as the Raman gain medium and the operating band can 
be easily tailored by choosing the appropriate pump wavelengths. 
By combining a few pump wavelengths, 100 nm bandwidth has 
been demonstrated as reported in [50]. This technology is normally 
considered as distributed Raman amplification (DRA) (Refer to 
Figure 26).

Figure 25  Energy level diagram representative of the Raman process, 
which takes a higher energy pump photon and splits it into a lower-

energy signal photon and a phonon.
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Figure 26  Distributed Raman amplification technology in transmission 
systems and signal power evolution along the transmission fibers. 

	 Referring to Figure 26, there are two optical power boundaries 
that influence the signal performance in transmission systems, for 
both large and small signals. Large signals have a tendency to induce 
nonlinear effects such as stimulated Brillouin scattering (SBS), four 
wave mixing and self-phase modulation [49]. If the signal power 
which reaches the amplifier input is very low, the ASE from the 
amplifier is dominant, which leads to deterioration of signal quality 
in terms of optical signal-to-noise ratio (OSNR). By having DRA 
in the transmission systems, the maximum power can be reduced 
below its nonlinear effect threshold, as the maximum signal power 
per channel is normally about 5 dBm. In addition to this, the signal 
power at the amplifier input is enhanced and as a result, signal 
quality is greatly improved (better OSNR).
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Figure 27  Engineering prototype of the Raman pump unit.

	 The impact of DRA can be observed in the experimental findings 
illustrated in Figure 28, which shows the 44-channel spectrum for 
wavelengths from 1530.33 to 1568.78 nm, when the Raman pump 
is turned off and on. It is worth noting that four channels at longer 
wavelengths have higher insertion loss as compared to the group of 
40 channels. Thus the signal power is lower as depicted in Figure 
28. However, this issue does not impact the measurement since the 
gain characteristics are taken into account. The total input power 
is 14 dBm and the average Raman on-off gain of 10 dB is set as 
the target value. The flat signal spectrum is observed for all the 
channels after travelling through 100 km of transmission fiber with 
gain variation of less than 1.1 dB.
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Figure 28  Spectrum of 44-channel WDM when the Raman pump is 
turned off (left) and on (right) at the end of the transmission fiber.

	 To verify the benefit of DRA in the transmission system, the 
Raman pump unit is disabled and the EDFA alone activated to 
compensate the span loss of 28 dB, as depicted in Figure 29. 
Then, the gain of the EDFA is adjusted to 18 dB in order to give 
some room for Raman amplification of 10 dB. Still, total gain is 
maintained at 28 dB to fully compensate for transmission loss. The 
output spectrum of the hybrid Raman/EDFA transmission system is 
shown by the green curve. The gain flatness is maintained at around 
1.2 dB for both transmission systems i.e. EDFA alone and hybrid 
Raman/EDFA. It is obvious that the noise floor is reduced by 5 dB 
in the hybrid Raman/EDFA system and the OSNR is improved. 
Reduction of the accumulated noise is beneficial to enhance the bit 
error rate performance of the transmission systems and thus, push 
towards longer transmission distances.
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Figure 29  The output spectra of 44 WDM channels through a 100 km 
span of fiber amplified with a conventional EDFA and a hybrid Raman/
EDFA. The peak power is the same while the noise floor is 5 dB for the 

hybrid Raman/EDFA system.

FIBER LASERS

Fiber lasers are referred to as lasers with optical rare-earth doped 
fibers as gain media. Many different rare-earth ions, such as erbium, 
neodymium, and ytterbium, can be used to make fiber lasers capable 
of operating over a wide wavelength range extending from 0.4 to 
4 m� . Fiber lasers have many advantages as compared to other 
types of lasers. They are compact, easy to build and manipulate and 
can be pumped with diodes. Compared to laser diodes, fiber lasers 
are spectrally cleaner and can be modulated with less chirp and 
signal distortion. Moreover, fiber-to-fiber compatibility is a distinct 
advantage in optical communication systems. The first fiber laser 
was demonstrated by Snitzer [51] as early as in 1961, by using a 
neodymium (Nd)-doped fiber with a 300 μm core diameter. Late in 
1965, Snitzer together with R. Woodcock [52], investigated a glass 
doped with both Erbium and ytterbium and achieved lasing action 

Raman pump 
OFF 

EDFA alone at 
28 dB

Raman pump ON
EDFA gain = 18 dB
Raman gain = 10 dB

OSNR
enhancement



45 ❘❘❚ 

Mohd Adzir Mahdi

at 1.54 μm. Low loss silica fibers were used to make diode-laser 
pumped fiber lasers in 1973 soon after such fibers became available 
[53]. Although there was some research activity in between, it 
was not until the late 1980s that fiber lasers were fully developed. 
Among rare-earth doped fiber lasers, Erbium-doped fiber lasers in 
the 1.5 µm region attracts the most attention because it coincides 
with the least-loss (as low as 0.2 dB/Km) region of silica fibers used 
for lightwave communications. The first Erbium doped fiber laser 
was reported by Mears [54] in 1986. It had a threshold of 30 mW 
absorbed pump power and slope of efficiency of 0.6%. In 1987, a 
low threshold (2.5 mW) CW operation of EDFL was demonstrated, 
pumped by a dye laser at 807 nm [6].

Laser Cavity

Several types of optical resonators have been used in designing fiber 
lasers. The various configurations of optical resonators are based on 
two types of cavities, linear cavity (bi-directional oscillation) and 
ring cavity (unidirectional oscillation), as illustrated in Figure 30. 
Linear cavity is realized by placing the active gain medium between 
two high reflecting mirrors as depicted in Figure 30(a). Ring cavity 
is often used for lasers since it is easy to fabricate in practice by 
forming a loop with the doped fiber and a coupler. The amount of 
output power is defined by the x% of coupling ratio as shown in 
Figure 30(b). Normally fiber lasers are constructed together with 
an appropriate filter to select the desired lasing wavelength. This 
filter is an external optical device that can generate either single 
lasing wavelength or multiple lasing wavelengths [55-57]. Instead 
of this, the filtering mechanism can also be performed by combining 
inherent scattering effects in optical fibers which is a more attractive 
solution to generate multiple wavelength lasers [58-67]. 
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Figure 30  Structure of fiber laser based on (a) linear cavity and 
(b) ring cavity.

Principle of  Laser

The word laser is an acronym for Light Amplification by Stimulated 

Emission of Radiation. A laser is composed of an optical cavity in 
which light can circulate, a gain medium which serves to amplify 
the light and a pumping mechanism. The latter two elements are 
made from the same structure as optical amplifiers. Therefore 
optical amplifiers can easily be upgraded to lasers by designing an 
optical cavity that allows oscillation of light generated by the gain 
medium. The same optical amplification principle is also applied 
to lasers, as depicted in Figure 31. With reference to Figure 31(b), 
it is seen that spontaneous emission occurs when the excited atoms 
from upper level, E

2
 drop down to the lower energy level, E

1
. When 

this spontaneous emission is pushed to circulate in the same gain 
medium, then it becomes an incoming photon that stimulates excited 
atoms to drop from E

2
 to E

1
 to generate identical photons. These 

photons, in turn, can serve to stimulate the emission of additional 
photons. This process will continue and the result is coherent light 
amplification (photon multiplication). When the gain obtained 
after one round-trip is larger than the cavity losses, laser threshold 
is reached and laser light is emitted out of the laser cavity [68]. 
Once laser effect is achieved, only specific wavelengths can be 
supported in the optical resonant cavity, called the longitudinal 
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modes of oscillation. The choice of emitted wavelengths depends 
on the spectroscopic properties of the active gain medium.

Figure 31  Two level laser system representing the process of 
absorption and emission between energy level E

1
 and E

2
: (a) absorption 

(b) spontaneous emission (c) stimulated emission.

MULTIWAVELENGTH FIBER LASERS

Fiber laser can be used for emitting light at several wavelengths 
simultaneously, and several schemes have been developed by 
a number of researchers [69-72]. Linear and ring resonator 
configurations have been investigated by using one or more filters 
to define the multiple lasing wavelengths. Such filters may have 
different forms, such as fiber Bragg gratings, bandpass filters, fabry 
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perot etalons and comb filters based on mode beating, either in a 
birefringent fiber or a multimode fiber [55, 69, 73-76]. 
	 Besides using physical mirrors, nonlinear effects in optical fibers 
can be utilized to generate multiple wavelengths such as four wave 
mixing and supercontinuum generation [77-80]. In addition, the 
filtering mechanism can also be performed by combining inherent 
scattering effects in optical fibers, which is a more attractive solution 
to generate multiple wavelength lasers [58-67]. In any optical fibers, 
the scattering effects cannot be avoided and these unwanted lights 
can be utilized to generate multiple wavelengths.  

Scattering Phenomena in Optical Fibers
It is well known that when light is transmitted in any media, 
reflection, absorption and scattering may occur due to interaction 
between light and media. The cross-sectional area of the core of 
single-mode optical fibers is very small and as such large light 
intensities can be reached at relatively low input powers. Thus, a 
number of scattering phenomena can be observed in optical fibers 
that include Rayleigh, Raman and Brillouin scattering. In all of 
these cases scattering is due to fluctuations in the refractive index 
of the fiber core. The inelastic interaction between optical photons 
and acoustic phonons leads to a frequency shift of the scattered 
phonons directly dependent on the characteristic of the sound 
velocity of the medium.

Stimulated Brillouin Scattering 
Stimulated Brillouin scattering (SBS) is a nonlinear process that 
can occur when the optical power launched into the fiber exceeds 
a threshold level [49]. It manifests through the generation of 
backward-propagating Stokes wave whose frequency is downshifted 
from that of incident light by an amount set by the nonlinear 
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medium. The first demonstration of SBS in optical fibers was 
reported in 1972  by Ippen and Stolen [81]. A single mode fiber 
with a large loss of about 1300 dB/km was used along with a pulsed 
high power narrowband xenon laser operating at 535.5 nm. As a 
result of the high fiber loss and short fiber lengths, ~20 m, the SBS 
threshold was high at 1 W of injected optical power. Since then a 
number of groups have reported Brillouin scattering in optical fiber 
with both pulsed and CW pump lasers [82-85] 
	 The physical process of SBS can be explained as a three-wave 
interaction in the optical fiber core. Laser light propagating through 
the fiber acts as a pump wave and induces an acoustic wave through 
the process of electrostriction, where the density of the glass is 
affected by the applied optical field [49]. The acoustic wave causes 
different periodic variations in the material density that result in 
periodic variations in the refractive index. This pump-induced 
index grating scatters the pump light through the Bragg diffraction 
process. The scattered light is down shifted in frequency because of 
Doppler shift associated with grating moving at the acoustic velocity 
(KA) as shown in Figure 32(a). According to quantum mechanics, 
the scattering process can be thought of as the annihilation of a 
pump photon that creates an anti-Stokes photon, while the creation 
of an acoustic phonon creates a Stokes photon. The intensity of 
the Stokes signal increases in tandem with the pump signal above 
its threshold power, as portrayed in Figure 32(b). The separation 
between the pump and Stokes signal is around 0.089 nm for silica 
optical fibers as shown in Figure 32(c). 
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(a)

(b)

(c)

Figure 32  (a) Process of stimulated Brillouin scattering in optical 
fibers, (b) spectral information of Stokes signal with respect to the 

increment of pump signal power and (c) optical spectrum of Brillouin 
Stokes and its pump signals.
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Brillouin-Erbium Fiber Laser

The generation of Brillouin Stokes line in optical fiber has been 
utilized as a single longitudinal fiber laser [86-88]. Since the 
Brillouin gain in optical fiber is low, it is difficult to achieve 
efficient operation of a fiber laser with its own cavity [49]. Thus, 
the SBS effect must be integrated with another amplifying medium 
to allow large output powers and avoid requirement for a critically 
coupled resonator. The amplifying medium provides a primary gain 
to compensate cavity loss and SBS is utilized as the frequency-
shifted mechanism. This idea was successfully demonstrated by 
combining the SBS effect with the Erbium gain medium to create 
a ring fiber laser with reasonable output powers [89]. In this case, 
only one channel was obtained from the proposed ring fiber laser 
structure.
	 This hybrid technique led to the development of multi-
wavelength Brillouin-Erbium fiber lasers (BEFLs) by feeding back 
the Brillouin Stokes lines into the laser cavity via the non-resonant 
direction; famously known as the reverse-S-shaped fiber section 
[90]. In this enhanced architecture of BEFL, two 3-dB couplers were 
deployed to tap a portion of the oscillating lasers to be injected into 
the single-mode fiber. However, the construction of the reverse-S-
shaped fiber section was achieved at the expense of higher cavity 
loss. Therefore, the total output power was low for this type of 
BEFL. In order to enhance BEFL performance, an Erbium-doped 
fiber amplifier (EDFA) was inserted in the reverse-S-shaped fiber 
section to enhance the lasers’ intensity as the subsequent Brillouin 
pump (BP) [91]. Two EDFA sections were required to achieve the 
objective, which increased operational complexity. All previous 
research works were based on the ring-cavity laser system.
	 The first linear cavity BEFL structure was reported in 2004, as 
in [59]. The efficiency of Brillouin Stokes signal generation and its 
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amplification is greatly increased because mode oscillation occurs 
in both directions. As a result, the proposed linear cavity BEFL 
produces greater channel counts as compared to its predecessor, 
the ring-cavity lasers. Figure 33 shows the output spectrum of 
the proposed linear cavity BEFL that consists of 18 Stokes lines 
(C-band) and 36 Stokes lines (L-band).

(a)

(b)

Figure 33 Output spectrum of the linear cavity BEFL in (a) C-band 
[59] and (b) L-band [66].
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	 The main drawback of BEFL is the generation of Brillouin 
Stokes lines in a wide tuning range and the interference of these 
lines with the self-lasing cavity modes. These modes are the natural 
effect of standing waves formation for any laser structure. These 
unwanted self-lasing cavity modes can be suppressed by injecting 
adequate amount of BP power into the BEFL cavity. Thus this 
technique is only efficient when the BP is injected in the region of 
peak oscillation. When the injected BP wavelength is beyond this 
range, the self-lasing cavity modes appear at the peak oscillation 
region by extracting energy from the group of cascaded Brillouin 
Stokes lines. 
	 To overcome the tunability limitation, various approaches have 
been implemented to develop a tunable BEFL [92-94]. The wide 
tuning range of up to 14.5 nm with the generation of up to 12 lines 
are obtained by incorporating a Sagnac loop filter into the fiber 
ring [95]. However, the manipulation of spectral loss to flatten the 
cavity gain has led to lower output power. On the other hand, the 
use of high external BP power to suppress self-lasing cavity modes 
is achieved at the expense of additional optical amplifiers to boost 
the Brillouin pump [93]. Despite the large tuning range given by 
self-seeded BEFL, its major disadvantage is the OSNR of lasers 
[94]. 
	 We have investigated the BEFL tuning range using the single-
pass amplification technique to pre-amplify BP power within the 
laser cavity before entering the single-mode fiber [96].  In the 
experiment, the EDF gain block is forced to operate in a deep 
saturation regime with respect to the Brillouin pump intensity. As 
a result, the self-lasing cavity modes experience gain compression 
and consequently, these unwanted cavity modes are efficiently 
suppressed in a wider wavelength range. Hence, homogeneous 
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saturation of the EDF gain plays a dominant role in attaining wider 
tuning range and stable laser operation. 
	 The output spectra comparison between BP direct injection and 
intra-cavity BP pre-amplification are depicted in Figure 34. Figure 
34(a) shows the superimposed optical spectra for the BP direct-
injection technique for BP wavelength of 1602 nm and 1608 nm. For 
both conditions, the presence of self-lasing cavity modes is clearly 
recorded at around 1605-1606 nm (laser cavity peak gain). On the 
other hand, these eccentrically oscillation modes are completely 
suppressed for the intra-cavity BP pre-amplification technique as 
clearly shown in Figure 34(b).

Figure 34  Output spectrum of the BEFL utilizing (a) BP direct-
injection technique and (b) BP pre-amplification technique for the 

pump power of 90 mW and BP power of 1.1 mW. BP wavelength is set 
at 1602 nm (blue curve) and 1608 nm (red curve) [96].

	 An enhanced multiwavelength BEFL with double-pass BP 
preamplified technique within the linear cavity was proposed and 
experimentally demonstrated in [97]. The main innovative step in 
this approach is the use of the internal EDFA to amplify the BP 
power twice within the laser cavity before entering the single-mode 
fiber. Therefore, the proposed fiber laser eliminates the requirement 
for high external BP power to create the Brillouin gain and achieve 
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low threshold power. Contrary to the direct-injection and single-pass 
preamplification of BP into the single-mode fiber, the tuning range 
of the proposed fiber laser is widened.
	 Referring to Figure 35(a), the number of output channels without 
any free-running cavity modes varies between 23 channels and 
25 channels within 6 nm for the conventional laser structure. On 
the other hand, the number of output channels varies between 15 
channels and 17 channels, within 14 nm for the proposed laser 
structure. As BP power increases, the tuning range of output 
channels (without free-running cavity modes) increases at the 
expense of the number of output channels generated. This is due 
to the fact that more effective power conversion from the pre-
amplified BP signal to Brillouin Stokes signals is induced with 
deeper EDF gain saturation of the BP signal in the peak gain 
bandwidth. Consequently, the generated Brillouin Stokes signal 
achieves its saturation level faster because of its higher gain when 
higher BP power and EDF pump power are used. In addition, this 
is also because of the effect of Brillouin gain saturation in which 
higher threshold power is required to create a higher order Stokes 
signal to lase in the laser cavity. The output spectra of the proposed 
laser structure are depicted in Figure 35(b). It is clearly seen that 
there are no free-running cavity modes appearing around the 1605 
nm wavelength range (the peak gain of laser cavity). In contrast to 
the results reported in Ref. [95], no filtering and careful adjustment 
of polarization controllers are needed to control the shape of the 
gain in the laser cavity. Thus, in the proposed laser structure, the 
oscillating cavity modes experience gain compression as a result of 
higher Stokes signal peak power and consequently, these unwanted 
cavity modes are efficiently suppressed in a wider wavelength range 
as depicted in Figure 35(b).
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(a)

(b)

Figure 35 (a) Number of output channels versus BP wavelengths at 
120 mW EDF pump power and 3.5 mW BP power for the two BEFL 

structures and (b) tunability of output channels at 120 mW pump 
power and 3.5 mW BP power for the proposed laser structure (BP pre-

amplification technique) [97].

	 A major disadvantage of BEFL however, is limited wavelength 
tunability owing to its self-lasing cavity modes. Schemes employed 
to overcome this limitation, include; spectrum filtering [92, 95], BP 
amplification technique [96, 97] and a variable optical attenuator 
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used to control the cavity mode’s oscillations [98]. Although the 
previous schemes were able to improve the tunability in BEFL, the 
self-lasing cavity modes cannot be completely suppressed in the 
laser cavity.  We demonstrated the concept of virtual reflectivity 
(generated through the use of a spool of fiber) in a ring cavity 
BEFL that overcomes the tuning range limitation, but the structure 
provides a low number of output channels [99].
	 The output spectra of the tunable laser system at selected 
wavelength of 1530 nm, 1538 nm, 1550 nm, 1562 nm and 1570 nm 
are shown in Figure 36. These wavelengths are preferred to show 
the BP wavelengths at the beginning, centre and end of the tuning 
range. It can be seen that the spectrum is devoid of any self-lasing 
cavity modes within the BEFL cavity for any BP wavelength within 
the selected tuning range of 40 nm. All through the 40 nm tuning 
range, the first 10 channels have individual power levels above -10 
dBm. Also, by comparing the channel’s peak power to the highest 
noise floor level, good OSNR above 20 dB is maintained by all the 
channels throughout the 40 nm tuning range. 

Figure 36  Output spectra of the BEFL at BP power of 2 mW and PP of 
130 mW, showing the generated channels at selected wavelengths [100].
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Brillouin-Raman Fiber Laser

Brillouin-Raman fiber lasers combine Brillouin gain as used in 
Brillouin fiber lasers with Raman gain generated in optical fibers. 
Raman gain uses the principles of Raman scattering to amplify 
optical signals. The advantages of Raman amplification is that they 
can be made to work in any wavelength band by simply choosing 
the appropriate pump wavelength. Unlike erbium – doped fiber 
amplifiers that work on the principles of population inversion 
between energy levels of the erbium ions and thus have restricted 
bandwidth, Raman amplifiers have a very large bandwidth. 
Apart from this, the fiber section that is used in the generation of 
Brillouin gain can also be used to generate the Raman gain. When 
a high power light beam is launched into an optical fiber, Raman 
scattering, normally referred to as spontaneous Raman scattering, 
takes place. In addition to the high power beam, if a weak light 
beam, normally called a signal beam, is launched into the same 
fiber, with the wavelength of the signal beam lying within the 
band of the spontaneous Raman scattering, it leads to stimulated 
Raman scattering. If this happens, the pump and signal wavelength 
are coherently coupled by the Raman scattering process. The 
coherent nature of the process implies that the incident light gets 
coherently amplified by the stimulated Raman scattering. This is 
the same process that is employed in the building of Raman gain 
assisted Brillouin fiber lasers. In most reported multiple wavelength 
Brillouin/Raman fiber lasers [62, 64, 101, 102], the Stokes cascading 
process relies on Rayleigh scattering rather than feedback loops as 
used in Brillouin/erbium fiber lasers.
	 In the early stages, the distributed Rayleigh scattering effect was 
manipulated as the cavity mirror to assist laser-cavity feedback as a 
means of providing reflections to the Brillouin Stokes lines [103]. 
This effect was successfully measured to indicate the Rayleigh 
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scattering contribution on the line narrowing effect that enhances 
the stimulated Brillouin scattering (SBS) process [104]. In another 
experiment, discrepancy between the odd and even channel profiles 
of Brillouin Stokes lines was observed, indicating a significant 
coupling contribution from the Rayleigh scattering to the SBS effect 
[105]. Owing to the process of Rayleigh scattering, this virtual 
mirror has weak reflectivity compared to the physical mirror. Thus, 
the proposed laser cavity is driven into deep saturation to push the 
Rayleigh component to reach the same saturation level set by the 
Brillouin components. On the other hand, distinctive power level 
discrepancy is clearly observed when the Brillouin-Raman fiber 
laser cavity is constructed from two virtual mirrors (no physical 
mirror at both cavity ends) [106].
	 In order to investigate this phenomenon further, a new fiber laser 
structure of Brillouin-Raman fiber laser is proposed in which both 
ends of the laser cavity are terminated with the high reflectivity 
mirrors [62].  Figure 37 shows the first few Stokes lines near the 
BP wavelength of 1534 nm with a resolution bandwidth of 0.01 nm, 
the operating point at the highest Brillouin Stokes number. It can 
be seen clearly that the odd and even Brillouin Stokes are almost 
the same in terms of power level, OSNR and line width. It is worth 
highlighting that the OSNR is measured at around 18 dB for each 
Brillouin Stokes. These characteristics mark an improvement over 
the ones previously reported due to complete lasing oscillation 
experienced by each Brillouin Stokes in the linear cavity.  
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Figure 37  A magnified output spectrum of a few Brillouin Stokes 
closer to the BP wavelength of 1534 nm [62].

	 The processes of Raman amplification, Brillouin shift and 
Rayleigh scattering are blended in the proposed laser structure. For 
BP wavelengths far away from the laser cavity gain, the generation 
of cascaded Brillouin Stokes lines is dominated by Rayleigh 
scattering and these Stokes lines are relatively weaker than other 
Stokes lines within the laser cavity bandwidth as shown in Figure 
38. As a result, the output power is also not flat over the whole 
wavelength range owing to this low saturation effect. The flat-
amplitude Stokes lines are defined by 3-dB peak power fluctuations 
across the whole spectrum regardless of the Stokes lines’ location. 
Referring to Figure 38, the flat-amplitude bandwidth is obtained 
from 1549.5 to 1558.6 nm, which is about 10.5 nm bandwidth. It 
is also important to note that the flat-amplitude region occurs in 
the range of the Raman peak gain. In addition, the noise envelope 
follows  the Raman gain spectrum exactly, which indicates that the 
oscillating Brillouin Stokes lines are not strong enough to suppress 
the noise generation from the stimulated Raman scattering. 
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Figure 38  Measured output spectrum for 1534 nm BP wavelength at 
10 mW power, the pump power is fixed at 300 mW [64].

	 Since the Raman amplification is gradually increased from 
short wavelengths to longer wavelengths, thus the amplification 
of Brillouin Stokes lines is also increased within this wavelength 
range. Therefore, the injection of BP into the laser cavity gets this 
benefit by selecting a wavelength lower than the Raman peak gain. 
The widest flat-amplitude bandwidth is obtained when the BP 
wavelength is set at 1540 nm and its power is cranked up to 10 mW. 
The measured flat-amplitude bandwidth is from 1542.8 to 1559.2 
nm, which is about 17.1 nm bandwidth, as shown in Figure 39.

Figure 39  Output spectrum following a proper optimization of BP 
wavelength (1540 nm) and power (10 mW), the Raman pump power is 

fixed at 300 mW [64].
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	 In order to widen the flat-amplitude bandwidth, the laser cavity 
must be pumped by another Raman pump wavelength to improve 
its Raman gain bandwidth. Based on our  analysis of the results, 
other Raman pump lasers at 1435 nm are activated to achieve 
the aforementioned objective. The pump power from the RPU 
is carefully adjusted concurrently with the optimization of BP 
wavelength and power. As a result, optimized output spectrum is 
obtained, which has flat-amplitude Stokes lines as depicted in Figure 
40. Under this condition, the BP wavelength is set at 1527 nm and 
its power is tuned to 4.14 mW. In addition, the RPU is configured 
as follows: 1435 nm (200 mW) and 1450 nm (120 mW). The flat-
amplitude bandwidth is obtained from 1527.32 to 1558.02 nm, 
which is about 30.7 nm bandwidth (357 Stokes lines with 0.086 
nm spacing). 

Figure 40  The optimized flat-amplitude spectrum of 30.7 nm 
bandwidth [64]. 
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Conclusion

The vast benefits of the optical communication system have more 
than justified the hype surrounding this amazing technology. 
Although the system is not without flaws, the exceptional 
performance accorded through its utilization far outweighs its 
drawbacks, and further emphasizes its superiority over other 
communication methods.
	 Looking at the current communication landscape where optical 
communication systems are in rapid deployment worldwide, it is 
tempting to think that current innovations of optical amplifiers and 
multi-wavelength laser sources -serve the requirements of WDM 
communication schemes well. However, one has to remember that 
this technology is just slightly over 40 years of age and in a way, 
still in its infancy. The race to Petabit/s (1015  bit/s) transmission 
systems is wide open and global telecommunication players are 
actively pursuing related research in a quest to become the first in 
recording this significant achievement. This target is in-line with 
the anticipated unprecedented growth in demand for bandwidth to 
support transparent networks in the near future.
	 The potential for further research in this area is immense, where 
the target is still for wideband amplifiers with improved gain, better 
signal quality and flatter gain spectrum, in addition to laser sources 
with high output power and more channels. These two research 
flavors are the foundation to support ultra high bit rate transmission 
systems. It is heartening to note that our local researchers are already 
in the thick of things with their noteworthy findings being published 
in high impact journals.
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