ESTABLISHMENT OF A BIOLISTIC-MEDIATED TRANSFORMATION SYSTEM FOR AN INDIGENOUS FRAGRANT ORCHID, *PHALAENOPSIS VIOLACEA*

CHEW YEE CHERN

FBSB 2006 16
ESTABLISHMENT OF A BIOLISTIC-MEDIATED TRANSFORMATION SYSTEM FOR AN INDIGENOUS FRAGRANT ORCHID, *PHALAENOPSIS VIOLACEA*

By

CHEW YEE CHERN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, In Fulfilment of the Requirements for the Degree of Master of Science

April 2006
ESTABLISHMENT OF A BIOLISTIC-MEDIATED TRANSFORMATION SYSTEM FOR AN INDIGENOUS FRAGRANT ORCHID, PHALAENOPSIS VIOLACEA

By

CHEW YEE CHERN

April 2006

Chairman: Professor Maziah Mahmood, PhD
Faculty: Biotechnology and Biomolecular Sciences

Phalaenopsis, orchid recognised by its moth-like shape, orderly arranged flower, and long flower shelf-life, is one of the most important orchids grown for commercial production of cut flowers and potted plants. A study was carried out to develop the genetic transformation system for an indigenous fragrant orchid species - Phalaenopsis violacea Witte as this system is important for the development of novel orchid varieties with improved floriculture features and marketability.

Protocorm-like bodies (PLBs) were successfully induced from leaf segments of in vitro seedlings, culturing on ½ strength Murashige and Skoog (MS) medium containing auxin 2,4-D (0.2, 0.4, 0.6, 0.8 and 1.0 µM) and NAA (0.4 and 0.6 µM) in three months. The highest frequency of PLBs formation was scored at 53 % on ½ strength MS basal medium containing 0.8 µM 2,4-D. However, using ½ MS medium supplemented with each 0.4 and 0.6 µM auxin...
NAA to induce PLBs, the frequency of PLBs induction was lower than 15%. No PLBs induction observed when auxin picloram and dicamba were employed to leaf segments at a series of concentration examined (0.2, 0.4, 0.6, 0.8 and 1.0 µM). Among all the organic additives [banana homogenate (BN), tomato homogenate (TM), coconut water (CW) and taro homogenate (TR)] tested in various concentrations (range 10, 20, 30, and 40 % w/v or v/v) for PLBs multiplication, optimal proliferation of PLBs was achieved through culturing on ½ MS medium supplemented with 10 % w/v BN. However, all the organic additives examined were found stimulated to PLBs growth in the concentration range of 5-10 % w/v or v/v compared to control treatment. Plant regeneration of PLBs was achieved in PGR-free ½ MS basal medium (with or without 10% w/v BN).

The effectiveness of hygromycin in selecting transformed tissues has been investigated based on the minimal hygromycin level that capable to thoroughly inhibit and/or killed all the non-transformed tissues. *Phalaenopsis violacea* Witte PLBs had shown a high sensitive respond to hygromycin as a low concentration (4 mg/L) of hygromycin was sufficient to meet the requirements. Potential physical and biological parameters affecting DNA delivery into *Phalaenopsis violacea* Witte PLBs have been optimised. Green fluorescence protein (GFP) was served as the reporter system except in the study of ‘Influence of co-bombardment plasmid DNA ratios on transient expression’, both GFP and β-glucuronidase (GUS) detection were employed. Based on the optimised results, the ideal bombardment conditions were as followed: 6 cm target tissues distance, 1100 psi acceleration pressure, 1.0 µm gold particle size, 27 mmHg chamber vacuum pressure, 1 X bombardment time, spermidine for DNA
coating on gold particle, 72 hours post-bombardment incubation time, 2 µg of total plasmid amount and 2:1 as the ratio of plasmid DNA used.

Two putative transformed lines (recovered from hygromycin selection) were achieved from a total of 160 PLBs bombarded using the optimised transformation parameters, thus, 1.25 % transformation efficiency was obtained. However, the post-cultivation period after bombardment was found to be critical as the putative transformed PLBs were only produced with 30 post-cultivation days (indirect hygromycin selection), while selection without going through post-cultivation after bombardment (direct hygromycin selection) failed to produce any putative transformant. Pattern and behaviour of GFP expression along the path to regeneration were observed on line A putative transformant PLBs that recovered from hygromycin selection after 6-11 months of culture. Young cells or tissues showed strong green fluorescence while matured tissues gradually faded and lost their green fluorescence.

Polymerase chain reaction (PCR) results that referred to the presence of transgenes (gfp, gusA, and hptII) in line A putative transformant PLBs (including second and third generation clonal progenies) showed that 100 % over the 32 samples tested were positive. All the gfp, gusA and hptII genes were retained from first to second and to third generation of clonal progenies in the putative transformants. However, no p35S::chs transgene was detected in both putative transformants lines as believes incorporated DNA might be fragmented during or after the bombardment events. Subsequently, accomplishment in DNA sequencing double confirmed the presence of gfp, gusA and hptII transgenes in the putative transformed PLBs.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENUBUHAN SISTEM TRANSFORMASI GENETIK BIOLISTIK BAGI ORKID BERAROMATIK TEMPATAN, PHALAENOPSIS VIOLACEA

Oleh

CHEW YEE CHERN

April 2006

Pengerusi: Profesor Maziah Mahmood, PhD

Fakulti: Bioteknologi dan Sains Biomolekul

Phalaenopsis, orkid yang terkenal dengan bentuk bunganya yang menyerupai rama-rama, susunan bunga yang teratur dan jangka hayat bungan yang panjang, merupakan salah satu daripada orkid yang penting, ditanam untuk dikomersialkan sebagai pakok tanaman atau bunga potong. Satu kajian telah dijalankan untuk membangunkan sistem transformasi genetik bagi orkid bau harum tempatan - Phalaenopsis violacea Witte, memandangkan sistem ini memainkan peranan yang penting untuk membangunkan orkid dengan rupa bentuk yang baru serta mempunyai nilai dagangan yang tinggi.

Protocorm-like-bodies (PLBs) telah berjaya dirangsang apabila potongan daun daripada anak pokok in vitro dikultur atas media Murashige dan Skoog (MS) berkekuatan separa yang mengandungi auksin 2,4-D (0.2, 0.4, 0.6, 0.8 dan 1.0 µM) dan NAA (0.4 dan 0.6 µM) dalam jangka masa 3 bulan. Frekuensi perangsangan PLBs adalah paling tinggi (53 %) pada
penggunaan media MS berkekuatan separa yang mengandungi 0.8 µM kepekatan 2,4-D. Namun, perangsangan PLBs adalah tidak melebihi 15 % apabila auksin NAA dengan kepekatan 0.4 dan 0.6 µM masing-masing digunakan bersama media MS berkekuatan separa. Tiada perangsangan PLBs dapat diperhatikan apabila auksin picloram dan dicamba dalam lingkungan kepekatan tertentu (0.2, 0.4, 0.6, 0.8 dan 1.0 µM) digunakan ke atas potongan daun.

Di antara kesemua bahan tambahan organik [homogenasi pisang (BN), homogenasi tomato (TM), air kelapa (CW) dan homogenasi keladi (YM)] yang diuji dalam pelbagai kepekatan (10, 20, 30, dan 40 % w/v atau v/v) untuk proliferasi PLBs, proliferasi PLBs yang tertinggi telah tercapai melalui pangkulturan atas media MS berkekuatan separa dibekalkan dengan 10 % w/v BN. Walau bagaimanapun, semua jenis bahan tambahan organik yang diuji didapati merangsang pertumbuhan PLBs dalam lingkungan kepekatan 5-10 % w/v atau v/v berbanding dengan lawatan kawalan. PLBs telah berjaya ditukarkan kepada anak pokok apabila dikultur atas media kepekatan separa MS tanpa PGR (dengan atau tanpa tambahan 10 % w/v BN).

Keberkesanan hygromycin dalam pemilihan tisu yang transform telah dikaji berdasarkan paras minimal hygromycin yang berupaya untuk merencat dan/atau membunuh sel atau tisu yang tidak dapat ditransform secara keseluruhan. PLBs Phalaenopsis violacea Witte telah mempamerkan reaksi sensitif ke atas hygromycin dalam kajian ini memandangkan kepekatan hygromycin yang amat rendah (4 mg/L) sudah mencukupi untuk menepati syarat keperluan. Parameter fizikal dan biological yang berpotensi untuk memberi kesan kepada penghantaran
DNA ke dalam PLBs *Phalaenopsis violacea* Witte telah dibedilkan. *Green fluorescent protein* (GFP) telah digunakan sebagai sistem pelapor dalam semua eksperimen parameter pembedilan melainkan dalam ujian ‘kesan nisbah DNA plasmid *co-bombardment* ke atas ekspresi transien’, di mana kedua-dua GFP dan β-glucuronidase (GUS) telah digunakan. Berdasarkan kepada keputusan pembedilan, keadaan bedilan yang paling sempurna adalah seperti yang berikut: 6 cm jarak antara tisu sasaran dengan skrin penghenti, 1100 psi tekanan penambahan laju, 1.0 μm saiz pembawa mikro emas, 27 mmHg tekanan peti vakum, 1 X bilangan bedilan, spermidin digunakan sebagai bahan pengikatan DNA ke atas pembawa mikro emas, 72 jam pos-bedilan, 2 μg jumlah DNA plasmid dan 2:1 *co-bombardment* nisbah DNA plasmid.

Sebanyak dua barisan PLBs transforman putatif (yang pulih daripada ujian pemilihan *hygromycin*) telah berjaya diperoleh daripada sejumlah 160 PLBs yang dibedil dengan menggunakan parameter transformasi yang optimal. Dengan demikian, 1.25 % keberkesanan transformasi telah dicatatkan. Namun, tempoh pos-kultivasi selepas bedilan didapati kritikal memandangkan hanya melalui tempoh 30 hari pos-kultivasi, PLBs transforman putatif dihasilkan (pemilihan secara tidak langsung *hygromycin*); manakala pemilihan tanpa melalui tempoh pos-kultivasi selepas bedilan (pemilihan secara langsung *hygromycin*) telah gagal memberi sebarang PLBs transforman putatif. Corak dan sifat ekspresi GFP daripada PLBs transforman putatif (barisan A) yang telah dikultur atas media pemilihan selama 6-11 bulan secara berterusan di sepanjang proses regenerasi telah dikaji. Sel atau tisu yang muda memberi fluorescen hijau yang terang; manakala bagi tisu yang matang, fluorescen GFP menjadi semakin pudar dan hilang fluorescen hijau.
Keputusan polymerase chain reaction (PCR) yang ditentukan melalui pengesanan kehadiran transgen (gfp, gus A dan hptII) di dalam PLBs transforman putatif barisan A (termasuk klonal progeni PLBs generasi ke-2 dan ke-3) menunjukkan bahawa 100 % daripada sejumlah 32 sampel yang diuji adalah positif. Semua gen gfp, gusA dan nptII telah dikekalkan daripada klonal progeni generasi pertama kepada kedua dan daripada kedua kepada ketiga dalam PLBs transforman putatif. Walaupun demikian, tiada intergrasi p35S::chs transgen yang dapat dikesan dalam transforman barisan ini, maka dipercayai DNA telah terpotong pada masa atau selepas aktiviti pembedilan. Seterusnya, kejayaan dalam penjukan DNA menguatkan lagi keputusan bagi kehadiran gfp, gusA dan hptII transgen di dalam PLBs transforman putatif.
ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my deep appreciation and gratitude to the chairman of my supervisory committee, Prof. Dr. Maziah Mahmood, for her invaluable advice, excellence guidance, contribution, motivation and constant support, not only in making the completion of this thesis a success, but also guided me to be a better person. Special thanks again to Prof. Dr. Maziah who gave me a gold opportunity to participate in the 8th Asia Pacific Orchid Conference (APOC) in Taiwan, April 2004. I’m also sincere thanks to my co-supervisor of my supervisory committee, Dr. Janna Ong Abdullah for her support, assistance, friendliness and as well as her suggestion throughout this research.

I would like to express my heartiest appreciation and thanks to my beloved family’s members. Thanks for all theirs care, understanding and patience throughout the course of this project. Thanks for all theirs love, moral and financially support that sustained me throughout this research. Appreciations also go out to all my ex- and present labmates from lab 235 for sharing their knowledge, friendship, ideas, as well as their life experiences during the course of this project.

Appreciation is extended to, Dr. Jen Sheen (Boston, USA) for providing the GFP constructs in the study and also Dr. Abdullah Sipat (UPM) for providing the pSMCHS plasmids. Last but not least, special acknowledgment should also go to Mr. Chong for his assistance with the digital camera and technical support in captured some higher resolution GFP pictures and make this thesis more successful.

IX
I certify that an Examination Committee has met on 12th April 2006 to conduct the final examination of Chew Yee Chern on his Master of Science thesis entitled “Establishment of a Biolistic-Mediated Transformation System for an Indigenous Fragrant Orchid, Phalaenopsis violacea” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Muhajir Hamid, PhD
Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Norihan Mohd Salleh, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Mohd Puad Abdullah, PhD
Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Zamri Zainal, PhD
Associate Professor
Faculty Science and Technology
Universiti Kebangsaan Malaysia
(External Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor/ Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: X
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Maziah Mahmood, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Janna Ong Abdullah, PhD
Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/ Dean
School of Graduate School
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

CHEW YEE CHERN

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>IX</td>
</tr>
<tr>
<td></td>
<td>APPROVAL</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>XII</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>XVI</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>XVII</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>XX</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 Plant Genetic Engineering

2.2 Recent Advances in Plant Transformation

2.3 Global Status of Commercialised Transgenic Crops

2.4 Genetic Engineering in Floricultural Crops

2.4.1 Colour Modification

2.4.2 Fragrance Modification

2.4.3 Vase-Life Modification

2.4.4 Alteration of Other Characteristics

2.5 Tissue Culture Techniques as Prerequisites of Genetic Transformation

2.6 Gene Delivery System

2.6.1 Agrobacterium-Mediated Transformation

2.6.2 Particle Bombardment

2.7 Tissue Culture and Genetic Transformation in Phalaenopsis Orchid

2.7.1 Micropropagation of Phalaenopsis

2.7.2 Genetic Transformation of Phalaenopsis

2.8 Screenable and Selectable Markers for Orchid Transformation

2.8.1 Screenable Markers

2.8.2 Selectable Markers

2.9 Towards Marker-Free Plant

3 MATERIALS AND METHODS

3.1 Plant Materials

3.2 General Chemicals and Supplies

3.3 Preparation of Explants for Genetic Transformation Studies
3.3.1 Basic Culture Medium and Cultures
Incubation Condition 54
3.3.2 PLBs Induction of *Phalaenopsis violacea* Witte
Using Leaf Segment as Explant 56
3.3.3 PLBs Proliferation Using Various Organic
Additives Medium 57
3.4 PLBs Regeneration into Plantlets 58
3.5 Determination of Minimal Inhibitory
Concentration of Hygromycin 58
3.6 Optimisation of the Bombardment Parameters 59
3.6.1 Preparation of Target Tissues 59
3.6.2 Consumables for Particle Bombardment
(PDS/He 1000 Bio-Rad System) 60
3.6.3 The Plasmid 60
3.6.4 Plasmid Preparation 61
3.6.5 Gold Particle Preparation and Coating
of Plasmid DNA onto Gold Particles 61
3.6.6 Particle Bombardment 62
3.6.7 GFP Monitoring 63
3.6.8 Histochemical GUS Assay and Transient Assessment 63
3.6.9 Statistical Analysis 65
3.7 Analysis of Putative Transformants 65
3.7.1 Biochemical Analysis 65
3.7.2 Molecular Analysis 67

4 RESULTS AND DISCUSSION 70
4.1 PLBs Induction of *Phalaenopsis violacea* Witte
Using Leaf Explants Obtained from *In vitro* Seedlings 70
4.2 Effects of Various Organic Additives on
Phalaenopsis violacea Witte PLBs Proliferation 76
4.3 Plantlet Regeneration from PLBs of *Phalaenopsis violacea* Witte 80
4.4 Determination of Minimal Inhibitory
Concentration of Hygromycin 85
4.5 Optimisation of Physical and Biological Parameters Affecting
Transient GFP Expression Using Particle Bombardment 91
4.5.1 Effect of Different Target Distance and
Acceleration Pressure 93
4.5.2 Effect of Gold Particle Size 96
4.5.3 Effect of Chamber Vacuum Pressure 97
4.5.4 Effect of Bombardment Number 99
4.5.5 Effect of Precipitation Agents 101
4.5.6 Effect of Post-Bombardment Incubation Time 103
4.5.7 Effect of Total Plasmid DNA Amount 105
4.5.8 Effect of Ratios Co-Bombarded Plasmid DNA
on GFP and GUS Transient Expression 107
4.6 GFP and GUS as the Reporter Systems for Transient Expression Study 109
4.7 Hygromycin Selection of Putative Transformants 112
4.8 The GFP Expression Patterns on Hygromycin-Recovered Putative Transformants 117
4.9 Molecular Analysis of the Putative Transformants 122

5 GENERAL CONCLUSIONS AND SUGGESTIONS 137
5.1 Introduction 137
5.2 Suggestion for Future Work as a Continuation of the Scope of Work Carried out in this Study 141

BIBLIOGRAPHY 142
APPENDICES 161
BIODATA OF THE AUTHOR 167
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Different transformation method and target tissue used in orchid transformation</td>
<td>39</td>
</tr>
<tr>
<td>2.2</td>
<td>Screenable markers used in orchid transformation</td>
<td>42</td>
</tr>
<tr>
<td>2.3</td>
<td>Selectable markers and selective agents that have been used or evaluated in orchid transformation</td>
<td>43</td>
</tr>
<tr>
<td>3.1</td>
<td>The bombardment parameters were studied independently in the co-bombardment event</td>
<td>64</td>
</tr>
<tr>
<td>3.2</td>
<td>Genes, primers, primer sequences and expected product length</td>
<td>68</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of different auxins (2,4-D and NAA) on quantity and size of induced Phalaenopsis violacea Witte PLBs after 12 weeks of culture</td>
<td>74</td>
</tr>
<tr>
<td>4.2</td>
<td>Effects of direct and indirect hygromycin selections on transformation efficiency of Phalaenopsis violacea Witte PLBs</td>
<td>115</td>
</tr>
<tr>
<td>4.3</td>
<td>Summary of transformation events of two different putative transformed Phalaenopsis violacea Witte PLBs clonal progeny generations A₁ and A₂ resulted from PCR analysis</td>
<td>129</td>
</tr>
<tr>
<td>5.1</td>
<td>Optimisation of the potential physical and biological parameters investigated independently in co-bombardment event</td>
<td>138</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>3.1</td>
<td>Phalaenopsis violacea Witte</td>
<td>55</td>
</tr>
<tr>
<td>3.2</td>
<td>Biolistic gun modal PDS/He 1000, invented by Bio-Rad (left); and plating of PLBs prior bombardment (right)</td>
<td>60</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of different auxins concentrations on PLBs induction from leaf segments of Phalaenopsis violacea Witte</td>
<td>73</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of different 2,4-D concentrations on Phalaenopsis violacea Witte PLBs induction after 12 weeks of culture</td>
<td>75</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of different auxins on Phalaenopsis violacea Witte PLBs induction after 12 weeks of culture</td>
<td>76</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of different organic additives and concentrations on the growth of Phalaenopsis violacea Witte PLBs</td>
<td>78</td>
</tr>
<tr>
<td>4.4</td>
<td>Physical appearance of Phalaenopsis violacea Witte PLBs multiplied on ½ strength MS medium supplemented with different organic additives at their optimised concentrations</td>
<td>79</td>
</tr>
<tr>
<td>4.6</td>
<td>The stages of Phalaenopsis violacea Witte plantlet regeneration from PLBs</td>
<td>83</td>
</tr>
<tr>
<td>4.7</td>
<td>Duration of Phalaenopsis violacea Witte PLBs converted into complete plantlet cultivated in vitro</td>
<td>84</td>
</tr>
<tr>
<td>4.8</td>
<td>Acclimatisation and flowering of Phalaenopsis violacea Witte clone</td>
<td>87</td>
</tr>
<tr>
<td>4.9</td>
<td>The hygromycin killing curve for Phalaenopsis violacea Witte PLBs</td>
<td>88</td>
</tr>
<tr>
<td>4.10</td>
<td>Physical effects exhibited by PLBs after five weeks of culture on medium containing various concentrations of hygromycin</td>
<td>89</td>
</tr>
<tr>
<td>4.11</td>
<td>Effect of different target distance for bombardment was evaluated using GFP reporter system in Phalaenopsis violacea Witte PLBs</td>
<td>95</td>
</tr>
<tr>
<td>4.12</td>
<td>Effect of different helium pressure (psi) on transient GFP expression in Phalaenopsis violacea Witte PLBs</td>
<td>95</td>
</tr>
</tbody>
</table>
4.13 Effect of different gold particle size on GFP transient expression in *Phalaenopsis violacea* Witte PLBs 97

4.14 Effect of different chamber vacuum pressure on transient *gfp* gene expression in *Phalaenopsis violacea* Witte PLBs 99

4.15 Effect number of bombardment on transient *gfp* gene expression in *Phalaenopsis violacea* Witte PLBs 101

4.16 Effect of the precipitation agents on GFP expression in *Phalaenopsis violacea* Witte PLBs 102

4.17 Effect of the post-bombardment incubation time on transient *gfp* gene expression in *Phalaenopsis violacea* Witte PLBs 104

4.18 Effect of different plasmid DNA concentration on GFP transient expression for *Phalaenopsis violacea* Witte PLBs 106

4.19 Effect of plasmid DNA ratio used for co-bombardment on GFP and GUS transient expression in *Phalaenopsis violacea* Witte PLBs 108

4.20 GFP transient expression on PLBs of *Phalaenopsis violacea* Witte 36 hours after bombardment 110

4.21 GUS transient expression on PLBs of *Phalaenopsis violacea* Witte 111

4.22 Recovery of putative transformed PLBs on medium containing 4 mg/L hygromycin 113

4.23 Schematic representation of putative transformed PLBs line identification and their clonal propagation 114

4.24 GFP as visible marker to monitor the stable GFP expression of putative transformed tissues 119

4.25 A higher magnification observation of stable GFP-expression pattern on *Phalaenopsis violacea* Witte PLBs clumps after 9 months constantly treated with hygromycin selection medium 120

4.26 GFP detection in different plant regeneration stages after 11 months continuously cultured on hygromycin selection medium 121

4.27 Genomic DNA separation on the 1 % agarose gel at 70 V for 90 min 125

4.28 PCR analysis of *gfp*, *gusA*, and *hptII* gene in A1 clonal progeny putative transformed *Phalaenopsis violacea* Witte PLBs 126

XVIII
4.29 PCR analysis of p35S::chs gene in both A1 and A2 clonal progenies putative transformed *Phalaenopsis violacea* Witte PLBs using specific primer pairs 127

4.30 PCR analysis of gusA, sgfp and hptII genes in the A2 clonal progeny of putative transformed *Phalaenopsis violacea* Witte PLBs 128

4.31 The amplified DNA fragments by PCR were sequenced using automated fluorescence DNA sequencer 130

4.32 Alignment of PCR amplified GFP sequences using BLASTN 2.2.10 132

4.33 Alignment of PCR amplified GUS sequences using BLASTN 2.2.10 134

4.34 Alignment of PCR amplified hygromycin-β-phosphotransferase sequences using BLASTN 2.2.10 136
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D</td>
<td>2,4-dichlorophenoxy acetic acid</td>
</tr>
<tr>
<td>35S</td>
<td>promoter of the cauliflower mosaic virus gene</td>
</tr>
<tr>
<td>ACC</td>
<td>1-aminocyclopropane-1-carboxylic acid</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>BA</td>
<td>6-benzyladenine</td>
</tr>
<tr>
<td>bar</td>
<td>phosphinothricin acetyltransferase gene</td>
</tr>
<tr>
<td>Ca(^{2+})</td>
<td>calcium ion</td>
</tr>
<tr>
<td>CaCl(_2)</td>
<td>calcium chloride</td>
</tr>
<tr>
<td>CHS</td>
<td>chalcone synthase</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DFR</td>
<td>dihydroflavonol-4-reductase</td>
</tr>
<tr>
<td>Dicamba</td>
<td>3,6-Dichloro-o-aniscic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxynicotinamide triphosphate</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>ethanol</td>
<td>ethyl alcohol</td>
</tr>
<tr>
<td>F3’5’H</td>
<td>flavonoid-3’,5’-hydroxylase</td>
</tr>
<tr>
<td>FW</td>
<td>fresh weight</td>
</tr>
<tr>
<td>GC-MS</td>
<td>gas chromatography mass spectrometry</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>GM</td>
<td>genetically modified</td>
</tr>
<tr>
<td>GMOs</td>
<td>genetically modified organisms</td>
</tr>
<tr>
<td>GUS</td>
<td>β-glucuronidase</td>
</tr>
</tbody>
</table>
h hour
Hg mercury
hpt hygromycin phosphotransferase gene
ipt isopentenyl transferase
ISAAA the International Service for the Acquisition of Agri-biotech Applications
kb kilo basepair
KCl potassium chloride
KH₂PO₄ potassium dihydrogen phosphate
KNO₃ potassium nitrate
LUC luciferase
MgCl₂ magnesium chloride
mgfp4 a modified version of GFP
Min minute
mM mili Molar
MS Murashige and Skoog
N nitrogen
NAA naphthalene acetic acid
NaCl sodium chloride
NaOH sodium hydroxide
(NH₄)₂NO₃ ammonium nitrate
nptII neomycin phosphotransferase type II
NTD New Taiwan Dollar
P phosphorus
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>p35S</td>
<td>35S-<i>sgfp</i>-TYG-nos GFP construct</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PEG</td>
<td>polyethylene glycol</td>
</tr>
<tr>
<td>PGRs</td>
<td>plant growth regulators</td>
</tr>
<tr>
<td>Picloram</td>
<td>4-Amino-3,5,6-trichloropicolinic acid</td>
</tr>
<tr>
<td>PLBs</td>
<td>protocorm-like-bodies</td>
</tr>
<tr>
<td>psi</td>
<td>pound per square inch</td>
</tr>
<tr>
<td>PVP</td>
<td>polyvinyl pyrrolidone</td>
</tr>
<tr>
<td>Ri</td>
<td>root induce</td>
</tr>
<tr>
<td>RM</td>
<td>Ringgit Malaysia (Malaysia currency)</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic Acid</td>
</tr>
<tr>
<td>rpm</td>
<td>rotations per minute</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
<tr>
<td>TAE</td>
<td>40 mM Tris-Cl (pH 7.4), 20mM sodium acetate, 1 mM EDTA</td>
</tr>
<tr>
<td>TDZ</td>
<td>thidiazuron</td>
</tr>
<tr>
<td>TE</td>
<td>10 mM Tris-Cl (pH 8.0), 1 mM EDTA</td>
</tr>
<tr>
<td>Ti</td>
<td>tumor induce</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris[hydroxymethyl]aminoethane</td>
</tr>
<tr>
<td>Tris-Cl</td>
<td>Tris-chloride</td>
</tr>
<tr>
<td>Ubi1</td>
<td>maize ubiquitin 1 promoter</td>
</tr>
<tr>
<td><i>uidA</i></td>
<td>gene encodes GUS</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
</tbody>
</table>
\textit{vir} \quad \text{virulence gene}

\textit{X-gluc} \quad \text{5-bromo-4-chloro-3-indoyl-glucuronide}

\mu M \quad \text{micro Molar}
CHAPTER 1

INTRODUCTION

Few plants can create such an aura of mystique and grandeur as orchids. For centuries the intricate nature of orchids, for example, complex flora structure (Kurzweil, 2005), mycorrhiza reliant seed germination (Tim et al., 2002), pollination mechanism (Christensen, 1994) and resupination (Arditti, 2005) have enthralled many people including layman and scientists (Hew and Yong, 1997). Orchids are distributed all over the world except in the Polar Regions. The number of orchid genera cannot exactly be stated, but an estimate is that this number lies between 820 and 1042; meanwhile a conservative estimate for the total number of orchid species is about 25,000 known species worldwide (Vogel and Schuiteman, 2004). These make orchids (Orchidaceae) the largest family of flowering plants of the world. The Royal Horticultural Society of United Kingdom has 130,000 registered artificial hybrids, however, there is a huge unregistered hybrids available and more than 260,000 of the natural hybrids (Oakeley, 2004).

Knowing that Malaysia is one of the twelve mega biodiversity countries blessed as the home of 800 species, covering 120 genera of orchids (Teo, 1995), orchid industry has become an important contributor to Malaysia’s economy. Malaysia floriculture industry has been given an important role under the support of National Agricultural Policy (NAP 1992 – 2010). The orchid industry in Malaysia has grown tremendously and the main destination of Malaysia fresh cut flowers orchids export was Singapore at 52 %, followed by Japan, 22 % and