ANALYSIS OF BILINEAR DISTILLATION COLUMN USING TUBULAR MODEL

By NORAZLIN BINTI IBRAHIM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

September 2004

DEDICATION

To my beloved husband, Mohd Tukiran Bin Mawi, my parents, my daughters Norizzah, Norinsyirah and Norathiliah, families and friend.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science.

ANALYSIS OF BILINEAR DISTILLATION COLUMN USING TUBULAR MODEL

By

NORAZLIN IBRAHIM

September 2004

Chairman : Samsul Bahri Mohd Noor, PhD

Faculty : Engineering

All studies on distillation columns aim at improving the process so that it can be run effectively and efficiently to yield better quality product with lower energy consumption. A good working model is needed as a basis for controller design.

Tubular Columns means a column represented by a spatially distributed model. It has been modeled using Partial Differential Equation numerically. The advantage of using Partial Differential Equation is that it can analyze more than one independent variable and produce the output in a natural way. Numerically, the solution that has been used in this study is *pdepe* command line function on the Tubular columns model for rectifier and stripper section.

A continuous spatially distributed Tubular equations had been derived and validated using *pdepe* function in two space dimension h' and τ . It depends on the sensitivity of right boundary condition, and two parameters α and h'. The open loop and closed loop test is done throughout this study, shows the comprehensively output of composition and separation. The Tubular model now, is ready to be applied on any type of control method.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains.

ANALISA TERHADAP 'BILINEAR DISTILLATION COLUMN' MENGGUNAKAN MODEL TUBULAR

Oleh

NORAZLIN IBRAHIM

September 2004

Pengerusi : Samsul Bahari Mohd Noor, PhD

Fakulti : Kejuruteraan

Kesemua kajian dalam *distillation column* adalah bagi memperbaiki proses *distillation column* supaya ia boleh digunakan secara efektif dan berkesan dengan menggunakan tenaga yang rendah. Oleh itu model yang baik bagi *Distillation column* diperlukan.

Tubular Column bermakna lajur yang menggunakan konsep penyebaran secara khusus. Ia telah dimodelkan menggunakan *Partial Differential Equation*. Simulasi terhadap *Tubular columns* bagi bahagian *stripper* dan *rectifier* telah menggunakan pakej fungsi *pdepe*.

Model Tubular telah dihasilkan dan disahkan menggunakan fungsi *pdepe* berdasarkan dua pemalar h' dan τ yang saling bergantungan. Ia juga berdasarkan kepada pemilihan sempadan kanan(qr) dan dua parameter α dan h'. Pengujian *open loop* dan *closed loop test* dilakukan di dalam tesis ini. Hasilnya adalah komprehensif. Oleh itu, Model Tubular sudah sedia untuk diaplikasikan menggunakan mana-mana bentuk kawalan.

ACKNOWLEDGEMENTS

I would like to express my gratitude to Dr. Samsul Bahari for the supervision, time and effort he has given in encouraging and directing me in this research. In additional he has also been a very kind supervisor on a more personal level. Thanks again to my supervisor for proof reading this thesis.

My thanks also go to my parents and family for their constant encouragement and prayers.

I gratefully acknowledge the support given by the staff of Computer Networking Technology, University Kuala Lumpur Malaysia France Institute, Bandar Baru Bangi in the cooperation of the credit hours teaching given to me. I certify that an Examination Committee met on _______ to conduct the final examination of Norazlin bte Ibrahim on her Master Science thesis entitled Analysis of Bilinear Distillation Column in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Chairman 1, Ph.D. Professor Name of faculty/institute Universiti Putra Malaysia (Chairman)

Examiner 1, Ph.D. Professor Name of faculty/institute Universiti Putra Malaysia (Member)

Examiner 2, Ph.D. Professor Name of faculty/institute Universiti Putra Malaysia (Member)

Independent Examiner, Ph.D.

Professor Name of faculty/institute Universiti Putra Malaysia (Independent Examiner)

GULAM RUSUL RAHMAT ALI, Ph.D.

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date :

This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirements for the degree of Master Science. The members of the Supervisory Committee are as follows:

Samsul Bahari Mohd Noor, PhD Faculty of Engineering Universiti Putra Malaysia (Chairman)

Azura Che Soh Lecturer Faculty Universiti Putra Malaysia (Member)

Ribhan Zafira bt Abdul Rahman Lecturer Faculty Universiti Putra Malaysia

(Member)

AINI IDERIS, Ph.D.

Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date :

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

NORAZLIN BT IBRAHIM

Date : 5 OCTOBER 2004

TABLE OF CONTENTS

			Page	
DEDICA	ii			
ABSTR	iii			
ABSTR	iv			
ACKNC	V			
APPRO	vi			
DECLA	viii			
LIST OF TABLES				
LIST OF FIGURES				
LIST OI	F ABBREV	IATIONS/NOTATIONS/GLOSSARY OF TERMS	xiv	
СНАРТ			1	
1. INTRODUCTION				
	ERATURE		8	
2		lation	8	
		Basic Distillation Column	11	
	2.1.2	5 51	14	
		Packing Type	14	
	2.1.4	Packing versus Tray	15 15	
-		Factor Affecting Distillation Column Operation m Dynamic and Steady State Modeling	15	
2	•	The Two Basic Stages of Linearisation	10	
		Separation Modeling	20	
	2.2.3		21	
	2.2.4	•	25	
2		ol Of Distillation Columns	26	
_		The System Design Problem	28	
	2.3.2		28	
2	2.4 Comp	outer Simulation	31	
	2.4.1	Advantages Of Computer Simulation	33	
	2.4.2	Disadvantages Of Computer Simulation	35	
	2.4.3	Partial Differential Equation Toolbox	36	
2	2.5 Concl	usion	37	
-		GY:MODELING THE TUBULAR DISTILLATION	40	
-	.UMN		40	
	3.1 Introduction			
Ċ		ar Distillation Column Model	41	
	3.2.1	The Inverted U-Tube Model	41	

		3.2.2 Equilibrium and Choices Of Variables	41
		3.2.3 Large Signal Partial Differential Equation Of Tubular Model	43
		3.2.4 Large Signal Steady-state Solution	43
		3.2.5 Model Derivation	44
4.	SIMULA MODEL	ATION TESTING AND RESULTS FOR TUBULAR	45
	4.1	Open-Loop Simulation Testing	45
		4.1.1 Testing the Tubular Composition	50
	4.2	Open-Loop Simulation Results	50
		4.2.1 Composition and Separation	55
	4.3	Closed-Loop Simulation Testing	61
	4.4	Closed-Loop Simulation Results	61
		4.4.1 Critical Stability	61
		4.4.2 Large Signal Closed-Loop Behavior	65
	4.5	Discussion	69
5.	CONC	LUSIONS AND SUGGESTIONS	72
	5.1	Conclusions	72
	5.2	Suggestions for Future Work	74
REFERENCES/BIBLIOGRAPHY			
APPENDICES			
BIODATA OF THE AUTHOR			