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ABSTRACT 

In this paper we investigate the almost everywhere convergence properties of the 
Riesz means of the eigenfunction expansions (multiple Fourier integrals), associated 
with Laplace operator. The generalized principle of localization for the Riesz means 
of the order = ( 1)(1/ 1/2), 1 2,s N p p− − ≤ ≤  is proved. 
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INTRODUCTION 

We consider the N -dimensional Euclidean space 
N

R , whose 

elements are denoted by 1 2 1 2= ( , ,..., ), = ( , ,..., )N Nx x x x y y y y  and we put  

2
1 1 2 2( , ) = ... , | | = ( , ).N Nx y x y x y x y x x x+ + +  

 

Let us consider the Laplace operator :∆   
2 2 2

02 2 2
1 2

( ) ( ) ( )
( ) = ... , ( ) ( ),

N

N

u x u x u x
u x u x C R

x x x

∞∂ ∂ ∂
∆ + + + ∈

∂ ∂ ∂
 

 

where 0 ( )N
C R

∞  denotes the space of functions with compact support that 

are infinitely differentiable in .
N

R  The Laplace operator with the domain 

0= ( )N
D C R

∞
∆  is symmetric and nonnegative: 

 

1) ( , ) = ( , ), , ;u v u v u v D∆−∆ −∆ ∀ ∈  

2) 2

( )
2

( , ) = ( , ) = || 0, .N
L R

u u u u u u D∆−∆ ∇ ∇ ∇ ≥ ∀ ∈||  
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A well-known theorem of Fredrichs (Alimov, Il’in and Nikishin, 

(1976)) asserts that every symmetric semi-bounded operator has at least one 

self-adjoint extension with the same lower bound. Let Â  be a self-adjoint 

extension of the Laplace operator in 2 ( ).N
L R  By von Neumann's spectral 

theorem, the operator Â  has a decomposition of unity { },Eλ  and can be 

represented in the following form 

0

ˆ = .A dEλλ
∞

∫  

The projections λE  increase monotonically, are continuous on the left, and 

tend strongly to the unit operator, that is, 
  

( )
2

|| = 0.lim NL R
E f fλ

λ→∞
−||  

The spectral decomposition of any arbitrary element 2 ( )N
f L R∈  is 

determined by the formula  

 
/2 ( , )

2| | <

ˆ( ) = (2 ) ( ) ,N i x
E f x f e d

ξ
λ

ξ λ

π ξ ξ−

∫  

where f̂  is the Fourier transform of the function :f   
 

/2 ( , )ˆ ( ) = (2 ) ( ) .
N i x

NR

f f x e dx
ξξ π − −

∫  

The Riesz means of order s  with ( ) 0,sℜ ≥  is defined by  
 

2
/2 ( , )

2| | <

| | ˆ( ) = (2 ) 1 ( ) ,

s

s N i xE f x f e dξ
λ

ξ λ

ξ
π ξ ξ

λ
−  

− 
 

∫
 

 

which can be written as follows  
 

( ) = ( , , ) ( )
s s

N
R

E f x x y f y dyλ λΘ∫  ,                                                               (1) 

where 

2
( , )

2| | <

| |
( , , ) = (2 ) 1 .

s

s N i xx y e dξ

ξ λ

ξ
λ π ξ

λ
−  

Θ − 
 

∫  
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For = 0s  this kernel is called the spectral function of the Laplace operator 

for the entire space 
N

R . The Riesz means of the spectral function can be 

computed explicitly by introducing polar coordinates, and take the form 

 

2

2

( | |)

( , , ) = (2 ) 2 ( 1) .

( | |)

N
s

s N s N

N
s

J x y

x y s

x y

λ

λ π λ

λ

+
−

+

−

Θ Γ + ⋅

−
 

 

The classical Riemann localization theorem (Alimov, Ashurov and 

Pulatov, (1992)) states that the convergence or divergence of a one 
dimensional Fourier series at a given point depends only on the behavior of 

the function 1f L∈  in an arbitrary small neighborhood of this point. If we 

shift to the multidimensional case, the localization principle does not hold in 

the class 1( )
N

L T  for spherical partial sums, where 
N

T  is a N-dimensional 

cube. The principle of generalized localization was introduced by Il'in (Il’in, 
1968)), where instead of the uniform convergence of the spectral 

expansions, it is required the almost everywhere convergence. 

 
We wish to investigate the general localization principle for multiple 

Fourier integrals, which is related to the Laplace operator in .
N

R  In this 

work we establish the principle of generalized localization for Riesz means 

of order = ( 1)(1/ 1/2).s N p− −  As starting point for such problems, is the 

conjuncture: the sufficient conditions for localization can be weakened if we 
consider the general localization problem. 

 

We first give the definition of the principle of generalized 

localization. Let Ω  be any open domain in .
N

R   

 

Definition 1.1. We say that the principle of generalized localization holds 

for ( )
s

E f xλ  in , 1,pL p ≥  if for all functions ( )
N

pf L R∈
 

0)(lim →
∞→

xfE s

λ
λ

 

almost everywhere on \ ( ).
N

R supp f  
 

We proceed to the formulation of the fundamental results of the paper. 
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Theorem 1.2.  Let ( ),1 2,
N

pf L R p∈ ≤ ≤  then the Riesz means at index 

1 1
= ( 1)

2
s N

p

 
− − 

 
 of the Fourier integrals of the function :f   

 

( ) 0lim
sE f xλ

λ →∞
→  

almost everywhere on \ ( ).
N

R supp f   

 

In other words, the theorem states that for the Riesz means of 

multiple Fourier Integrals of the order = ( 1)(1/ 1/2)s N p− −  the generalized 

localization principle holds in classes ( ),
N

pL R  1 2.p≤ ≤  We note that, in 

case of = 0, = 2s p  the statement of Theorem 1.2 has been proved in Bastys, 

(1973). For the partial integrals of Fourier integrals in the classes 

( ),2 < 2 /( 1),
N

pL R p N N≤ −  the principle of generalized localization is 

proved in Carbery and Soria, (1988). The summability of the Fourier-

Laplace series by Cesaro means is investigated in the following works 

(Anvarjon, (2009), Anvarjon, (2006), Bonami and Clerc, (1973), Bastys, 
(1983) and Rakhimov, (2004)). The principle of generalized localization in 

1L  for the Fourier-Laplace series is established by Rakhimov (Rakhimov, 

(2004)). In the work Anvarjon, (2009), following the ideas of interpolation 

of an analytic family of linear operators, it is proved that the principle of 

generalized localization is valid for Riesz means of the Fourier-Laplace 
series, on the critical line. We note that the work Anvarjon, (2009) is first 

result on critical line, all previous works were devoted to the investigation 

on the above of the critical line. In current work, using the 2L  estimates in 

Carbery and Soria, (1988) for partial integrals of the Fourier integral and 
applying again interpolation theorem on analytic family of linear operators 

(Yoram, (1969)) we have established the problem of generalized localization 

on critical line for spectral decomposition of the Laplace operator in entire 

.
N

R  For more information about the multiple Fourier integrals we refer to 

Alimov, Il’in and Nikishin, (1976) and Alimov, Ashurov and Pulatov, 

(1992). 

 

In the study of questions of almost everywhere convergence it is 
convenient to introduce the maximal operator  

 

   
*

>0

( ) = | ( ) | .sup
s sE f x E f xλ

λ

                                                                       (2)
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The investigation of the almost everywhere convergence of the Riesz 

means 
s

E fλ  is based on estimates of *

s
E f  in 1L  and 2L , and on a 

subsequent application of interpolation theorem. 
 

Let | |A  denote the Lebesgue measure of the set .A  The following 

statement establishes necessary estimate for *

s
E f  in 1L .  

 

Theorem 1.3  Let )(1

N
RLf ∈  and ( ) = 0,

N
f x x R∈Ω ⊂ , then for the 

Riesz means of the order ,s  
1

( ) =
2

N
s

−
ℜ  and for any > 0,α    

( )
1

*

||

| { : ( ) > }| .
NL Rs

f

x E f x Cα
α

Ω ≤∩
||

                                                        (3) 

  
The statement of the Theorem 1.3 we use when = 1.p  In case of = 2p  for 

partial integrals we have  
 

Theorem 1.4  Let 2 ( )
N

f L R∈  and ( ) = 0,
N

f x x R∈Ω ⊂ , then for partial 

integrals of the Fourier integrals of the function ,f    

2

( )
2

*

||

| { : ( ) > }| ,
NL Rs

f

K x E f x Cα
α

 
 ≤
 
 

∩
||

                                                  (4) 

 where K  is any compact subset of .Ω   

 
 

PROOF OF THEOREM 1.3 

 This section is devoted to the proof of the estimation in 1.L  To 

establish the estimation for Riesz means in 1L  we use asymptotical 

estimations of the spectral function and properties of the maximal functions 

of the Hardy-Littlewood. Let 1( ).
N

f L R∈  The following function  

>0
( , )

1
( ) = | ( ) |sup

| ( , ) |
f

r
B x r

m x f y dy
B x r ∫

 
 
is called the maximal function of the Hardy-littlewood of the ,f  where 

 

( , ) = { :| |< }.
N

B x r y R x y r∈ −  
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Lemma 2.1  Let 1( )
N

f L R∈  and ( ) = 0, .
N

f x x R∈Ω ⊂  Then for any 

,x∈Ω   

*

1
( ) ( ), ( ) .

2

s
f

N
E f x C m x s

−
≤ ⋅ ℜ ≥                                                           (5) 

Proof. Due to regularity of Riesz means it is sufficient to prove the 

statement of the Lemma for the case 
1

( ) = .
2

N
s

−
ℜ  Assume that the 

function 1( )
N

f L R∈  with the compact support vanishes in the domain 

N
RΩ ⊂ . For an arbitrary compact set K ⊂ Ω , let denote = ( , )dist Kδ ∂Ω . 

Then for any ,x K∈  and any ,y ∈Ω  we have | |> .x y δ−  Thus we obtain  

22

2\

( | |)

( ) = ( ) .

| |

NN
ss

s

N
s

NR

J x y

E f x C f y dy

x y

λ

λ

λ
+−

+
Ω

−

−
∫  

 

To estimate the absolute value we have  

 
( ) ( )

2 2

2\

| ( ) | | ( | |) | | ( ) |

N N
s s

s
N

s
N

R

E f x C J x y x y f y dyλ λ λ
−ℜ − −ℜ

+
Ω

≤ − − ≤∫  

1 1
( ) ( )

2 2 ( ) = ( ).

R RN N
s s

N
r rC r dF f x C r dF f x

δ δ

λ
− +

−ℜ − −ℜ
−≤ ∫ ∫  

 

In the last integral integrating by parts gives  

1
* ( ) ( ) ( ) ( ).

R

s N N
r r fE f x Cr F f x CN r F f x dr Cm x

δ

− − −≤ + ≤∫  

 

Lemma 2.1 is proved.  

Lemma 2.2  Let f  be a given function defined on 
N

R  

1) If ( ),1
N

pf L R p∈ ≤ ≤ ∞ , then the function fm  is finite almost 

everywhere. 

2) If 1( )
N

f L R∈ , then for every > 0α   

|{ : ( ) > }| | ( ) | .f

N
R

C
x m x f x dxα

α
≤ ∫  

 

This lemma is proved in [16]. The proof of Theorem 1.3 can be established 

as follows: for s  with 
1

( ) = ,
2

N
s

−
ℜ  and for all ,x ∈ Ω  using the relation 
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*{ : ( ) > } { : ( ) > }
s

fx E f x x m xα α⊂  we obtain:  

* ( )
1

|{ : ( ) > }| |{ : ( ) > }| || .
s

f N
L R

C
x E f x C x m x fα α

α
≤ ≤ ||  

Theorem 1.3 is proved. 

 
 

PROOF OF THEOREM 1.4 

Let 2 ( ),
N

f L R∈  and ( ) { :| | 3}.
N

supp f x R x⊂ ∈ ≥  We prove that for 

every < 3r  the following inequality holds: 

  
2 2

>0
| | | | 3

| ( ) | | ( ) | ,sup
i

r

x r x

E f x dx C f x dx
τ

λ
λ

≤ ≥

≤∫ ∫                                         (6) 

with : < < .τ τ−∞ ∞  
 

Let ( )b tχ  be the characteristic function of the segment [ , ]b b−  and 

( )tφ  be a smooth function defined for 0,t ≥  such that 

(3 )/3 2(3 )/3( ) ( ) ( ).r rt t tχ φ χ− −≤ ≤  Then we define ( ) = (| |) (2 | |)x x xψ φ φ−  and 

( ) = ( )
2

j j

x
xψ ψ  for = 1,2,....j  We obtain 

1

(| |) ( ) 1.j

j

x xφ ψ
≥

+ ≡∑  

Let 
,

= .
j i

j

τ τ
λ λψΘ Θ  If ( ) {| | 3}supp f x⊂ ≥ , then for all :| |x x r≤  we 

have,  
,

1

( ) = = ( ),
i i j

j

E f x f f x
τ τ τ

λ λ λ
≥

Θ ∗ Θ ∗∑  

because ( (| |) * )( ) = 0
i

f x
τ
λ φΘ ⋅  if | |< , < 3.x r r  

 
We investigate the Fourier transform of the "spectral function" 

,
( )

j

t x
τΘ . Let 

, ,ˆ( ) = ( )( )
j j

t tm
τ τξ ξΘ . When = 0τ  we use notation ,

j

tm  i.e. 

0,
( ) = ( ).

j j

t tm mξ ξ  For ( )
j

tm ξ  we have, 

 

Lemma 3.1  For any > 0, , 1
N

t R jξ ∈ ≥   

|| | |<| |2

ˆ| ( ) | | ( ) | .
j

t

j
t y

m y dy

ξ

ξ ψ
−−

≤ ∫  

This lemma is proved in Carbery and Soria, (1988).  
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Lemma 3.2  For any positive integer n  there exists a constant C  such that 

for any > 0, , = 1,2,...
N

t R jξ ∈  we have the following estimate  

,| ( ) | .
(1 || | | 2 )

j
t j n

C
m

t

α ξ
ξ

≤
+ −

 

 
Proof. We consider the following function:  

,

0

( ) = (1 ) ( ).j i j
t t

t
m dm

λ
α αξ ξ

λ
−∫  

The integral we divide integral into two parts as follows  
/2

,
1 2

0 /2

( ) = (1 ) ( ) (1 ) ( ) = ( ) ( ).j i j i j
t t t

t t
m dm dm I I

λ λ
α α α

λ

ξ ξ ξ λ λ
λ λ

− + − +∫ ∫  

Estimation of 2 ( ).I λ  Using the following formula  

| |<2

ˆ( ) = ( ) (2 )
j j N j

t t

j
y

d N
m m t yt ydy

dt t
ξ ξ ψ ξ+ ∇ +∫  

we obtain :  

|| | |2 <| |

ˆ ˆ| ( ) | 2 (| ( ) | | ( ) | (1 | |)) .
j j

t

j
t y

d
m C y y y dy

dt
ξ

ξ ψ ψ

−

≤ + ∇ +∫  

Then for 2 ( )I λ  we have  

2

/2|| | |2 <| |

2
ˆ ˆ| ( ) | (| ( ) | | ( ) | (1 | |))

j

j
t y

c
I y y y dydt

λ

λ ξ

λ ψ ψ
λ

−

≤ + ∇ + ≤∫ ∫  

 
1

/2|| | |2

2
.

(1 )

j N

l

j
t

c r
drdt

r

λ

λ ξ
λ

∞ −

−

≤
+∫ ∫  

 

By changing the order of integration, and taking into account the relation 

{( , ) : /2 ,|| | | 2 } {( , ) :|| | | 2 , | | | | }
j j

t r t t r t r t r r t rλ λ ξ ξ ξ ξ≤ ≤ − ≤ ≤ ∞ ⊂ − ≤ ≤ ∞ − ≤ ≤ +

  
| |1

2

| ||| | |2 || | |2

2 2
| ( ) | =

(1 ) (1 )

rj N j N

l l

j jrt

c r c r
I dtdr dr

r r

ξ

ξξ ξ λ

λ
λ λ

+∞ ∞−

−− −

≤ ≤
+ +∫ ∫ ∫  

2 1
, = 1.

(1 || | | 2 )

j

j n

c
n l N

λ ξ λ
≤ − −

+ −
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Now we consider 1( ).I λ  Using the integration by parts we obtain  
/2 /2

/2 1
1 0

0 0

( ) = (1 ) ( ) = (1 ) ( ) | (1 ) (1 ) ( ) .i j i j i j
t t t

t t i t t
I dm m m dt

λ λ
α α λ αα

λ ξ ξ ξ
λ λ λ λ λ

−− − + − −∫ ∫
 
Using the inequality  

|| | | | |

ˆ| ( ) | | ( ) | ,
j

t

t y

m y dy

ξ

ξ ψ
− ≤

≤ ∫  

we get  
/2

1 /2

0 || | | | |

2 | |
ˆ| ( ) | | ( ) | | ( ) | .

j

t y

I m y dydt

λ

λ

ξ

α
λ ξ ψ

λ
− ≤

≤ + ∫ ∫  

 
Similarly as in previous case we have  

/2 /2 1

0 || | | | | 0 || | |

ˆ| ( ) |
(1 )

N

l

t y t

r
y dydt C drdt

r

λ λ

ξ ξ

ψ
∞ −

− ≤ −

≤ ≤
+∫ ∫ ∫ ∫

0

1
.

(1 || | | 2 )j n
C

ε ξ λ+ −
 

 

Consequently for 1( )I λ  we have  

1| ( ) | .
(1 || | | 2 )j n

C
I λ

ξ λ
≤

+ −
 

 

Finally we obtain  

,| ( ) | .
(1 || | | 2 )

j

j n

C
mα

λ ξ
ξ λ

≤
+ −

 

 

The lemma is proved. 

For the derivative of the function 
,

( )
j

tm
α ξ  we obtain 

 

Lemma 3.3  For any positive integer n  there exists a constant C  such that 

for any > 1t  and , =1,2,...
N

R jξ ∈  ,  

,

0

2
| ( ) | .

(1 || | | 2 )

j
j

t j n

d C
m

dt t

α ξ
ε ξ

≤
+ −

 

 
We proceed to the proof of Theorem 1.4. 
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For the maximal operator we have  

 
,

*
>0 >01

( ) | | | ( ) | .sup sup
i i j

j

E f x f f x
τ τ τ

λ λ
λ λ≥

≤ Θ ∗ ≤ Θ ∗∑  

 

We see that it suffices to prove the estimate  
, 2

>0

| ( ) | 2 | ( ) | .sup
j jf x C f x dxτ

λ
λ

−Θ ∗ ≤ ∫  

 
To prove this inequality we follow the ideas of Alimov, Ashurov and 

Pulatov, (1992):  

, 2 , ,

0

| ( ) | = 2 | ( ) ( ) | .j j j
t t

d
f x f x f x dt

dt

λ
τ τ τ
λΘ ∗ Θ ∗ Θ ∗∫  

 

By the Cauchy-Schwarz inequality, we obtain  
1/2 1/2

, 2 , 2 , 2

>0
0 0

| ( ) | 2 | ( ) | | ( ) | .sup
j j j

t t

N N NR R R

d
f x dx f x dtdx f x dtdx

dt

τ τ τ
λ

λ

∞ ∞   
   Θ ∗ ≤ Θ ∗ Θ ∗
   
   

∫ ∫ ∫ ∫ ∫

 

We show that  
1/2

, 2

2
0

| ( ) | 2 || ,
j j

t L

NR

f x dtdx C f
τ

∞
−

 
 Θ ∗ ≤
 
 
∫ ∫ ||  

and  
1/2

, 2

2
0

| ( ) | || || .
j

t L

NR

d
f x dtdx C f

dt

τ
∞ 

 Θ ∗ ≤
 
 
∫ ∫  

 

By duality and Plancherel's theorem, it is not difficult to see that these 
estimates are equivalent, respectively, to  

, 2 2 2

0 0

| ( ) ( , ) | 2 | ( , ) | ,j j
t

N NR R

m g t dt d C g t dt dtdτ ξ ξ ξ ξ ξ
∞ ∞

−≤∫ ∫ ∫ ∫  

 

and  
 

, 2 2

0 0

| ( ) ( , ) | | ( , ) | .j
t

N NR R

d
m g t dt d C g t dt dtd

dt

τ ξ ξ ξ ξ ξ
∞ ∞

≤∫ ∫ ∫ ∫  
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The last inequalities are easy consequence of the Lemma 3.2 and Lemma 

3.3.  
 

This completes the proof of Theorem 1.4. 

 
 

INTERPOLATION THEOREM 

For Riesz means we will apply interpolation theorem of an analytic 
family. The classical Riesz-Thorin interpolation theorem was extended by 

Hirchman, (1953) and Stein, (1956) to analytic families of operators. 

 

Let ( ), = ,F z z x iy+  be analytic function in 0 < ( ) < 1zℜ  and 

continuous in 0 ( ) 1.z≤ ℜ ≤  ( )F z  is said to be of admissible growth if:  
 

| |

0 1

log | ( ) |sup
a y

x

F x iy Ae
≤ ≤

+ ≤
 

 

where < .a π  The significance of this notion is in the following lemma due 

to Hirchman, (1953):  

 

Lemma 4.1 If ( )F z  is of admissible growth and if  

 

0log | ( ) | ( ),F it a t≤  

1log | (1 ) | ( ),F it a t+ ≤  

then  

0 0 1 1log | ( ) | ( , ) ( ) ( , ) ( )F P t a t dt P t a t dtϑ ϑ ϑ
∞ ∞

−∞ −∞

≤ +∫ ∫  

where ( , ), = 1,2,jP t jϑ  are the values of the Poisson kernel for the strip on 

( ) = 0, ( ) = 1.z zℜ ℜ   

 

We next define analytic families of linear operators: Let ( , )M µ  and 

( , )N ν  be two measure spaces. Let { }zT  be a family of linear operators 

indexed by , 0 ( 1.z z≤ ℜ ≤  So that for each , 0 ( ) 1,z z≤ ℜ ≤  the zT  is a 

mapping of simple functions on M  to measurable functions on .N  
 

The family of linear operators { }zT  is called an analytic family if for 

any measurable set E  of M  of finite measure, for almost every y N∈ , the 

function ( ) = ( )( )y z Ez T yχΨ  is analytic in 0 < ( ) < 1zℜ , continuous in 
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0 ( ) 1,z≤ ℜ ≤  where Eχ  is characteristic function of the set .E  The analytic 

family is of admissible growth if for almost every y N∈ , ( )y zΨ  is of 

admissible growth. 
 

We recall the notion of pqL  spaces. An exposition of these spaces 

can be found in Hunt, (1966). 

 

Let f  be a measurable function defined on unit sphere. We assume 

that f  is finite valued almost everywhere. We denote,  

= { :| ( ) |> }, ( ) =| | .fE x f x Eα αα λ α  

 

We assume also that for some .<)(0,> ∞αλα f  We define  

}.)({inf=)(
0>

* ttf f ≤αλ
α

 

 

( )
N

pqL R  is the space of all measurable functions f  for which 
*

< ,pqPfP ∞  

where 
1/

/ 1 *

0

* 1/ *

>0

[ ( )] , 0 < , < ,

|| == ( ), 0 < , = .sup

q

q p q

p

pq
t

q
t f t dt p q

p

f t f t p q

∞

−
 
 ∞ 
  

≤ ∞ ∞





∫

||                    (7) 

For =p q  these are the usual pL  spaces, while for =q ∞  we have 

the so-called weak pL  spaces, i.e. the spaces of functions which satisfy  

( ) .f p

c
s

s
λ ≤  

 

Theorem 4.2 If { }zT  is an analytic family of linear operators, which is of 

admissible growth, and for all simple functions 

 
* *

0
0 0 0 0

||| ( ) || ,it p q p qT f A t f≤|| ||                                                                          (8) 

* *
1 1

1 1 1 1
||| ( ) || || ,it p q p qT f A t f+ ≤||                                                                          (9) 

where 
| |

log ( ) , <
a t

iA t Ae a π≤ , then for all ,0 < < 1ϑ ϑ  
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0 1 0 1

1 1 1 1 1
= , =

p p p q q q

ϑ ϑ ϑ− −
+ +  

 

0 1 0 1

1 1 1 1 1
= , =

p p p q q q

ϑ ϑ ϑ− −
+ +  

 

we have for all simple function f   

,||||||
**

pqqp fBAfT |||| ϑϑ ≤  

 

where  

0 0 1 1log | | ( , ) log ( ) ( , ) log ( ) .A P t A t dt P t A t dtϑ ϑ ϑ
∞ ∞

−∞ −∞

≤ +∫ ∫  

The proof of this theorem is given in Yoram, (1969). 

 

Lemma 4.3  Let ( ),1 2,
N

pf L R p∈ ≤ ≤  and ( ) = 0,
N

f x x R∈Ω ⊂ , then for 

Riesz means of the order = ( 1)(1/ 1/2)s N p− −  one has  

*

||
|{ : ( ) > } | .

p

L
ps

f
x E f x Cα

α

 
 ≤
 
 

||
                                                             (10) 

Proof. If 1( ),
N

f L R∈  and ( ) = 0,
N

f x x R∈Ω ⊂ , then for the Riesz means 

of the order 
1

= , 0,
2

N
s iτ τ

−
+ ≠  we have:  

| | 1
*

||
|{ ( ) > }| .

Ls

N

f
E f x A e

π τα
α

≤
||

 

In pqL  sense, this is: 

* | | *
* 1, 1,1

1
( ) || || , = , 0.

2

s
N

N
E f x A e f s iπ τ τ τ∞

−
≤ + ≠|| ||                                   (11) 

 

In case of ,2L  for any τ  we have  

| |
* ( ) ( )2 2

( ) || || , .i
L K N N

L R
E f x c e f Kτ π τ≤ ∀ ⊂ Ω|| ||  

 

The weak estimation is  
2

| | 2
*

||
|{ : ( ) > }| ,

Li
N

f
x E f x B e

τ π τα
α

 
≤  
 
 

||
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and in sense of pqL  we have:  

* | | *

* 2, 2,2|| ( ) || || .
i

NE f x B e f
τ π τ

∞ ≤ ||                                                                 (12) 

 

We apply to (11) and (12) the interpolation theorem on an analytic 

family of linear operators on pqL  space. 
 

Let ( )xµ  be a measurable function on 
N

R  such as 

00 ( ) <xµ µ≤ ≤ ∞  and 
1

( ) = ,
2

N
s z z

−
 0 ( ) 1.z≤ ℜ ≤  We define an analytic 

family of linear operators:  
 

1.)(0),(=)(
)(

)( ≤ℜ≤ zxfExfT
zs

xz µ  

 

From (12) we have 
 

.||||)(||||)(
*

2,2

/2||*

2,

)(

*

*

2, fBexfExfT
yiys

iy |||| π≤≤ ∞∞                                (13) 

  

Secondly on the line = 1z iy+ , we have 

 
* (1 ) | |/2 *

1 1, * 1, 1,1( ) || || ( ) || || .
s iy y

iyT f x E f x Ae f
π+

+ ∞ ∞≤ ≤|| ||                                     (14) 

 

Here we can write (13) and (14) as follows: 
 

,||||)(||)(
*

2,20

*

2, fyKxfTiy ≤∞||                                                                  (15) 

,||||)(||)(
*

1,11

*

1,1 fyKxfT iy ≤∞+||                                                                 (16) 

 

where 
| |/2

0 ( )
y

K y Ae
π≤  and 

| |/2

1( )
y

K y Be
π≤ . Therefore by the interpolation 

we get  

 
( ) * *

* , ,( ) || || ,
s t

p t p pE f x K f∞ ≤|| ||                                                                   (17) 

 

 where tK  is given by 

0 1log (1 , ) log ( ) ( , ) log ( ) ,tK t y K y dy t y K y dyω ω
∞ ∞

−∞ −∞

≤ − +∫ ∫  

and ( , )t yω  is the Poisson kernel for the strip 0 1, < < .t y≤ ≤ −∞ ∞  By the 

properties of Poisson kernel, we have  
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0,),( ≥ytω  

(1 , ) 1, ( , ) 1t y dy t y dyω ω
∞ ∞

−∞ −∞

− ≤ ≤∫ ∫  

 

and  
 

log .tK C≤  
 

Note that if, 

1 1
= ,

2 1

t t

p

−
+  

then  

1 1 2 1 1
( ) = = 1 = ( 1) .

2 2 2

N N
s t t N

p p

   − −
− − −   

   
 

 

Hence (17) becomes 
( ) * *

* , ,( ) || || || .
s t

p p pE f x C f∞ ≤||  

This means for 
1 1

= ( 1) ,1 < < 2,
2

s N p
p

 
− − 

 
 we have  

*

||
|{ : ( ) > } | .

p

L
ps

f
x E f x Cα

α

 
 ≤
 
 

||
 

 

Lemma 4.3 is proved. 
 

The proof of Theorem 1.2. 
 

Let us denote by ( )f xΛ  the fluctuation of ( )
s

E f xλ :  

( ) =| ( ) ( ) | .lim sup lim inf
s sf x E f x E f xλ λ

λ λ→∞ →∞

Λ −  

 

It is obvious, that  

*( ) 2 ( ).
s

f x E f xΛ ≤
 

 

From density of C
∞  in , 1,pL p ≥  we have for any > 0ε  every function 

pf L∈  can be represented as the sum of two functions:  

1 2( ) = ( ) ( ),f x f x f x+  
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where 1( ) ,f x C
∞∈  and 1 1/

2 .p
L

p
f ε +≤|| ||  Then we have  

2 2|{ : ( ) > } =|{ : | ( ) ( ) |> }|limsup liminf
s sx f x x E f x E f xλ λ

λλ

ε ε
→∞→∞

Λ − ≤  

*

||
{ : ( ) > }| .

2

p

L
ps

f
x E f x C

ε
ε

ε

 
 ≤ ≤ ≤
 
 

||
 

 

Therefore almost everywhere ( ) = 0.f xΛ  Consequently for Riesz means of 

order 
1 1

= ( 1) ,1 2,
2

s N p
p

 
− − ≤ ≤ 

 
 we have  

( ) = 0,lim
sE f xλ

λ→∞  
 

almost everywhere in .Ω  
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