DESIGN AND DEVELOPMENT OF A NOVEL MULTIWAVELENGTH BRILLOUIN-ERBIUM FIBER LASER

By

MOHAMMED HAYDER AL-MANSOORI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of Requirements for the Degree of Master of Science

March 2004
In the name of Allah, Most Gracious, Most Merciful

Dedication to

My parents, my son Abd-Rahman,

And all of my family members
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

DESIGN AND DEVELOPMENT OF A NOVEL MULTIWAVELENGTH BRILLOUIN-ERBIUM FIBER LASER

By

MOHAMMED HAYDER AL-MANSOORI

March 2004

Chairman: Professor Borhanuddin Mohd. Ali, Ph.D.

Faculty: Engineering

Multi-wavelength laser sources with constant wavelength spacing are of great interest in dense wavelength division multiplexing (DWDM) communication and sensors systems. As the transmission capacity of optical communication systems is approaching a few Tb/s through WDM method in recent years, multiwavelength generation technology becomes more important, considering that the complexity and the cost of the source will increase as the number of WDM channel increases.

In this thesis, the design and development of a novel architecture of multi-wavelength Brillouin/Erbium fiber laser (BEFL) utilizing a linear cavity fiber loop technique is presented. Simultaneous and stable multiple wavelength lasing in a linear cavity have been achieved. The results are based completely on the experimental work. The requirement of internal feedback that is commonly used for multiple wavelengths Brillouin/Erbium fiber laser using a ring configuration is achieved by the proposed linear
cavity design. This design used only a single 980 nm pump laser for its multiple wavelengths operation. Based on the design parameters namely; 980 nm pump power, Brillouin pump power, Brillouin pump wavelength and single mode fiber (SMF) the performance of a novel BEFL is presented in terms of threshold power, Stokes signal peak power, number of Stokes generated, stability of the Stokes and tuning range. Throughout this work, three lengths of SMF-fiber are used, 1.9 km, 8.8 km and 25 km. The optimization of Brillouin pump wavelength, power and Erbium gain led to a maximum possible number of Stokes. Twenty-two stable output laser lines with 10.88 GHz (0.088 nm) line spacing were obtained at 1558 nm that was the peak of Erbium-doped fiber (EDF) gain. The injected Brillouin pump power into the 8.8 km SMF-fiber was set at 0.9 dBm and the EDF was pumped by 100 mW of 980 nm pump laser.

The most efficient cascaded Brillouin Stokes operation occurred at the peak of Erbium gain centered on 1558 nm. The number of Stokes decreased as the Brillouin pump increased in the highest region of Erbium gain. On the contrary, the number of Stokes was proportional to the intensity of the Brillouin pump power outside this wavelength range. The best performance and conversion efficiency of Brillouin pump to the BEFL signal occurs at the lower levels of injected Brillouin pump power. A low threshold of 4 mW pump power with 2.3 mW launched Brillouin pump into the 8.8 km of SMF-fiber at 1558 nm was obtained. The tuning range of the Stokes signal must be taken into account both the Brillouin and EDF pump powers, at a fixed EDF pump power the Stokes signal can be tuned wider at a higher Brillouin pump power while higher EDF pump power produces smaller tuning range.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

REKACIPTA DAN PEMBANGUNAN LASER FIBER ERBIUM-BRILLOUIN PELBAGAI-PANJANG GELOMBANG BARU

Oleh

MOHAMMED HAYDER AL-MANSOORI

Mac 2004

Pengerusi: Profesor Borhanuddin Mohd. Ali, Ph.D.

Fakulti: Kejuruteraan

Punca laser pelbagai-panjang gelombang dengan jedaan panjang gelombang yang tetap merupakan sesuatu yang diminati dalam sistem komunikasi Pemultipleksan Pembahagi Panjang-gelombang Padat (DWDM) dan sensor. Kapasiti penghantaran sistem komunikasi optik menghampiri Terabit/saat melalui cara WDM dalam beberapa tahun kebelakangan ini dan teknologi penghasilan pelbagai-panjang gelombang menjadi semakin penting, di mana kerumitan dan kos punca cahaya meningkat dengan peningakatan bilangan saluran WDM.

Di sepanjang kajian ini, pelbagai panjang SMF digunakan, iaitu 1.9 km, 8.8 km, dan 25 km. Pengoptimaan panjang gelombang pam Brillouin, kuasa dan gandaan Erbium menghasilkan bilangan Stokes semaksima mungkin. Dua puluh dua garisan laser keluaran yang stabil dengan jedaan panjang-gelombang sebanyak 10.88 GHz (0.088 nm) pada 1558 nm iaitu gandaan puncak fiber terdop-Erbium (EDF) telah didapati. Kuasa pam Brillouin yang dimasukkan ke dalam SMF 8.8 km disetkan pada 0.9 dBm dan EDF itu dipam oleh laser pam 980 nm dengan kuasa sebanyak 100 mW.

pam Brillouin dilancarkan 2.3 mW, SMF 8.8 km pada 1558 nm telah dihasilkan. Julat pelarasan bagi isyarat Stokes mestilah diambil kira untuk kedua-dua kuasa; Brillouin dan kuasa pam EDF, pada kuasa pam EDF yang telah ditetapkan isyarat Stokes boleh ditala dengan lebih luas pada kuasa pam Brillouin yang lebih tinggi sementara pada kuasa pam EDF yang lebih tinggi menghasilkan julat talaan yang lebih kecil.
ACKNOWLEDGEMENTS

First of all, I would like to express my greatest gratitude to Allah the almighty, for his help and support during the course of life and moment of truth. Alhamdullilah.

I would like to express my deepest gratitude to my supervisor, Professor Dr. Borhanuddin Mohd. Ali. I feel privilege to have him as my advisor. I am profoundly grateful for his tremendous support, comments, encouragement, quick response and mentoring through my research.

My special thanks go to my committee members, Associate Professor Dr. Mohamad Khazani Abdullah and Associate Professor Dr. Mohd Adzir Mahdi for their help, wise council, guidance, encouragements, quick response and valuable suggestions. I feel honored to have been a part of their research groups for the last year, I am sure that example will continue to inspire me in the future. Thank you for continual support, endless encouragement and patience towards completing the research. Without all that nothing would have been accomplished.

Special thanks extended to all members of Photonics and Wireless Laboratory who has contributed to the successful completion of this study.

I would like to thank my colleagues, Bouzid Belloui, Suhairi, Hisham Zuhdi, Mohammed Mekhlafi, Mohammed Howieg, Naseer Matrood, Mohammed Hamarsheh, and Aiman Kaser for their friendship, support, and encouragement.
Last, but definitely not least, I would like to thank my father and my mother—the best that anybody could have—for their unconditional love and continual support that made me strong in completing this thesis. Also, I would like to thank my wife, my family, my friend Talib and my brothers Abas and Ali for their constant support and encouragement throughout my life. I could not have done without their help!
I certify that an Examination Committee met on 1st March 2004 to conduct the final examination of Mohammed Hayder Al-Mansoori on his Master of Science thesis entitled “Design and Development of a Novel Multiwavelength Brillouin-Erbium Fiber Laser” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Khairi Yusuf, Ph.D.
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Syed Javaid Iqbal, Ph.D.
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Elshadiq Ahmed Mohammed Babiker, Ph.D.
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Farid Ghani, Ph.D.
Professor
School of Electrical and Electronic Engineering
Faculty of Engineering
Universiti Sains Malaysia
(Member)

GULAM RUSUL RAHMAT ALI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Borhanuddin Mohd. Ali, Ph.D.
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohammed Khazani Abdullah, Ph.D.
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Mohd Adzir Mahdi, Ph.D.
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

AINI IDERIS, Ph.D.
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for the quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or currently submitted for any other degree at UPM or other institutions.

MOHAMMED HAYDER AL-MANSOORI

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background 1
1.2 Motivation and Problem Statement 4
1.3 Scope of the Work 5
1.4 Research Objectives 5
1.5 Organization of the Thesis 6

2 LITERATURE REVIEW

2.1 Introduction 7
2.2 Techniques in Multiple Wavelength Fiber Lasers System 7
 2.2.1 Cooling 8
 2.2.2 Gain Equalization 8
 2.2.3 Spatial Multiplexing 9
 2.2.4 Polarization Multiplexing 10
 2.2.5 Frequency Shifting 10
 2.2.6 Extracavity Spectral Slicing 11
 2.2.7 Stimulated Brillouin Scattering 11
 2.2.8 Summary of the Techniques 12
2.3 Review of the Multi-wavelength EDFL’s 13
2.4 Critical Review of the Multi-wavelength BEFL’s 15

3 BASIC PRINCIPLES AND THEORIES

3.1 Introduction 22
3.2 Optical Resonators for CW Fiber Lasers 22
 3.2.1 Fabry Perot Cavity 23
 3.2.2 Ring Cavity 23

3.3 Stimulated Brillouin Scattering 24
 3.3.1 SBS in Optical Fibers 25
 3.3.2 Brillouin Frequency Shifts of Optical Fibers 25
 3.3.3 Stimulated Brillouin Scattering Gain 28
 3.3.4 Stimulated Brillouin Scattering Threshold 29
 3.3.5 Gain Saturation 31
 3.3.6 Stimulated Brillouin Fiber Optic Ring Resonator 31
 3.3.7 Stokes Waves Generation 33
 3.3.8 SBS Application 35
 3.3.9 Advantage and Disadvantage of SBS 35

3.4 Erbium-Doped Fiber Lasers 36
 3.4.1 Pump and Gain 37
 3.4.2 Laser Threshold Power 38
 3.4.3 Tuning Range 39

3.5 Summary 40

4 METHODOLOGY 41

4.1 Introduction 41
4.2 Experimental Setup 42
4.3 Principle of Operation 44
4.4 Brillouin/Erbium Fiber Laser Parameters under Study 47
 4.4.1 Design Parameters 47
 4.4.1.1 Pump Power 48
 4.4.1.2 Brillouin Pump Power 48
 4.4.1.3 Brillouin Pump Wavelength 48
 4.4.1.4 Single Mode Optical Fiber Length 49
 4.4.2 Performance Parameters 49
 4.4.2.1 The Stokes Signal Peak Power 50
 4.4.2.2 Threshold Power 50
 4.4.2.3 Number of Stokes Signal 51
 4.4.2.4 Tuning Range 52

4.5 Components of Brillouin/ Eribium Fiber Laser 52
 4.5.1 Brillouin Pump Power 53
 4.5.2 Pump Power 53
 4.5.3 Active Material and Splicing 54
 4.5.4 Optical Coupler/Tapper 55
 4.5.5 Optical Circulators 56
 4.5.6 Wavelength Division Multiplexer (WDM) 57

4.6 Summary 58