
Malaysian Journal of Mathematical Sciences 3(2): 147-159 (2009) 

 

 

 

On Invariants of Complex Filiform Leibniz Algebras 

 

Isamiddin S.Rakhimov 

Department of Mathematics, Faculty of Science and  

Institute for Mathematical Research, 

Universiti Putra Malaysia, 

43400 UPM Serdang, Selangor, Malaysia 

E-mail: isamiddin@science.upm.edu.my 

 

 

ABSTRACT 

The paper intends to survey the subject of the title for an audience of mathematicians 
not necessarily expert in the areas of commutative algebra and algebraic geometry. It 
is devoted to the isomorphism invariants of low dimensional Complex filiform 
Leibniz Algebras under the action of the general linear group (“transport of 
structure”). The description of the field of invariant rational functions in low 

dimensional cases is presented. 
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INTRODUCTION 

1. Group Action. Orbits. 

Let G be a group and X be a nonempty set. 

 

Definition 1.1.  An action of the group G on X is a function : X XGσ × →  

with: 

(i) ( , )e x xσ = , where e is the unit element of G and Xx ∈   

(ii) ( , ( , )) ( , )g h x gh xσ σ σ= , for any ,g h G∈ and Xx ∈ . 

 

We shortly write gx for ( , )g xσ , and call X a G-set. 

 

Let K be a field [X] { : X }K f K= → be the set of all functions on X. It is an 

algebra over K with respect to point wise addition, multiplication and 

multiplication by scalar operations. 
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Definition 1.2. A function : Xf K→  is said to be invariant if 

( ) ( )f gx f x= for any g∈G and x∈X. The set of invariant functions on X, 

denoted by K[X]
G
, is a subalgebra of  K[X]. 

 

( ) { |O x y X g G= ∈ ∃ ∈ such that }y gx=  is called the orbit of the element x 

under the action of G. 

 

Theorem 1.3.  Let X be a G-set. Define a relation ∼ on X by for all 

, Xx y ∈ , x ∼y if and only if gx y= for some g G∈ . 

 

Then ∼ is an equivalent relation on X.  
 

It is evident that the equivalence classes with respect to equivalent relation ∼ 
are the same with the orbits of the action of the group G. 

 

If we consider the factor set X/∼ then the invariant functions are functions 

on X/∼ . 

 

2. Affine Algebraic Variety [Hartshorne, 1977]. 

• Definition and examples 

• Algebra of regular function on A.A.V. 

• Irreducibility 

• Field of rational function 

• Morphism of A.A.V. 

 

 Let K be a fixed algebraically closed field. We define affine space over 
K denoted A

n
, to be the set of all n-tuples of elements of K. An element 

P∈A
n
 will be called a point, and if P = (a1,...,an) with ai∈K, then the ai will 

be called the coordinates of P. 

 

Let A = K[x1, ..., xn] be the polynomial ring in n variables over K. We will 
interpret the elements of A as functions from the affine n-space to K, by 

defining f(P) = f(al,..,an), where f∈A and P∈A
n
. Thus if  f∈A is a polynomial, 

we can talk about the set of zeros of f, namely Z(f) = { P∈A
n f(P) = 0}. 

More generally, if T is any subset of A, we define the zero set of T to be the 

common zeros of all the elements of T: 

 

(T) { | ( ) 0nZ f= ∈ =P A P for all T}f ∈ . 
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Clearly if ℘ is the ideal of A generated by T, then Z(T) Z( )= ℘ . 

Furthermore, since A is a noetherian ring, any ideal ℘ has a finite set of 
generators f1,..., fr. Thus Z(T) can be expressed as the common zeros of the 

finite set of polynomials f1,...,fr. 

 
Definition 2.1. A subset Y of A

n
 is an algebraic set if there exists a subset 

T A⊂ such that Y Z(T)= .  

 
Proposition 2.2. The union of two algebraic sets is an algebraic set. The 

intersection of any family of algebraic sets is an algebraic set. The empty set 

and the whole space are algebraic sets. 

 
Definition 2.3. We define the Zariski topology on A

n
 by taking the open 

subsets to be the complements of the algebraic sets. This is a topology, 

because according to the proposition, the intersection of two open sets is 
open, and the union of any family of open sets is open. Furthermore, the 

empty set and the whole space are both open. 

 
Definition 2.4. A nonempty subset Y of a topological space X is irreducible 

if it cannot be expressed as the union Y = Y1 ∪ Y2 of two proper subsets, 
each one of which is closed in Y. The empty set is not considered to be 

irreducible.  

 
Example 2.5. A

1
 is irreducible, because its only proper closed subsets are 

finite, yet it is infinite (because K is algebraically closed, hence infinite). 

 

Example 2.6. Any nonempty open subset of an irreducible space is 
irreducible and dense. 

 

Example 2.7. If Y is an irreducible subset of X, then its closure in X is also 
irreducible. 

 

Definition 2.8. An affine algebraic variety or simply affine variety is an 
irreducible closed subset of A

n

 (with the induced topology).  

 

Now we need to explore the relationship between subsets of A
n
 and ideals in 

A more deeply. So for any subset Y ⊂ A
n
, let us define the ideal of Y in A by 

I(Y) { | (P) 0f A f= ∈ =  for all P Y}∈ . 

 

Now we have a function Z that maps subsets A to algebraic sets, and a 

function I which maps subsets of A
n
 to ideals. Their properties are 

summarized in the following proposition.  
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Proposition 2.9. 

(a) If T1⊆T2 are subsets of A, then Z(T1)⊇Z(T2). 

(b) If Y1⊆Y2 are subsets of A
n

, then I(Y1)⊇I(Y2). 

(c) For any two subsets Y1, Y2 of A
n

, we have  I(Y1∪ Y2) = I(Y1)∩I(Y2). 

(d) For any ideal , I(Z( ))=A℘⊆ ℘ ℘ the radical of ℘. 

(e) For any subset Y ⊆A
n

, Z(I(Y)) = the closure of Y. 
 
Theorem 2.10 (Hilbert's Nullstellensatz). Let K be an algebraically closed 

field, let ℘ be an ideal in A = K[x1, ..., xn], and let f∈A be a polynomial 

which vanishes at all points of Z(℘). Then f 
r∈℘ for some integer r >0. 

 

Proof. Atiyah-Macdonald [Atiyah, Macdonald, 1969] or Zariski-Samuel 

[Zariski, Samuel, (1958, 1960)]. 

 
Corollary 2.11. There is a one-to-one inclusion-reversing correspondence 

between algebraic sets in A
n
 and radical ideals (i.e., ideals which are equal to 

their own radical) in A, given by Y→I(Y) and ℘→Z (℘). Furthermore, an 
algebraic set is irreducible if and only if its ideal is a prime ideal. 

 

Example 2.12. Let f be an irreducible polynomial in A = K[x,y]. Then f 

generates a prime ideal in A, since A is a unique factorization domain, so the 

zero set Y = Z(f) is irreducible. It is called the affine curve defined by the 
equation f(x,y) = 0. If f has degree d, than Y is said to be a curve of degree d. 

 

Example 2.13. More generally, if f is an irreducible polynomial in 

1[ , , ]
n

A K x x= … , we obtain an affine variety Y = Z(f), which is called a 

surface if n = 3, or a hypersurface if n > 3. 

 

Example 2.14. A maximal ideal ℑ of A=K[x1, ..., xn] corresponds to a 
minimal irreducible closed subset of A

n
, which must be a point, say 

1P ( , , )
n

a a= … . This shows that every maximal ideal of A is of the form 

1 1( , , )
n n

x a x aℑ = − −… , for some a1,…,an∈K. 

 

Example 2.15. If K is not algebraically closed, these results do not hold. For 
example, if K = R, the curve x

2
 + y

2
 + 1 = 0 in A

2
 has no points.  

 

Definition 2.16. If Y⊆A
n
 is an affine algebraic set, we define the affine 

coordinate ring K[Y] (sometime A(Y)) of Y to be A/I(Y). 

 
Remark 2.17. If Y is an affine variety, then A(Y) is an integral domain. 

Furthermore, A(Y) is a finitely generated K-algebra. Conversely, any finitely 
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generated K-algebra B which is a domain is the affine coordinate ring of 

some affine variety. Indeed, write B as the quotient of a polynomial ring 

A=K[x1,..., xn] by an ideal ℘, and let Y = Z(℘). 
 

Let X and Y be affine varieties and ϕ : X→Y be a function from X into Y. 

 

Definition 2.18. The function  ϕ:X→Y is called morphism (or regular 

mapping) from X into Y if f °ϕ is a regular function on Y. 

 
Example 2.19. Let F1, F2,…,Fm be polynomials in K[T1, ..., Tn] then 

: A An mϕ → defined by 1 1 2( ) ( , , ) (F ( ),F ( ), ,F ( ))
n m

x x x x x xϕ ϕ= =… …  a 

morphism. 

 
Example 2.20,  Let X=Z(y

2
-x

3
+1) be affine algebraic variety in A

2
 with the 

coordinate system (x,y) and Y=Z((t
3
-s

2
+1),(r-s

2
)) be affine algebraic variety 

in A
3
 with the coordinate system (s,t,r). Then the function ϕ defined by  

ϕ(x,y)=(x, y, x
2
) is a morphism from X into Y.  

 

3. Algebraic Group Action 

• Definition and Examples 

• Orbits and their closures 

• Induced action of an algebraic group on the algebra of regular functions  

• Invariant regular functions. Algebra of regular invariant functions 

• The fourteenth Hilbert problem 

• The field of invariant rational function   

 

Definition 3.1. An regular action of an algebraic group G on an affine 

variety X is a morphism ρ:G×X→X with 

(i) ρ(e,x)=x, where e is the unit element of G and x∈X. 

(ii) ρ(g, ρ(h,x)) = ρ(gh,x), for any g,h∈G and x∈X.  
 

We shortly write gz for ρ(g,x), and call X a G-variety. 
Rather than presenting results we have preferred to work out some of the 

examples, partly well known and elementary, in order to introduce the 

subject and to explain the main ideas.  

 

Examples.  Let consider the general action of GL2 on A
2
 defined by  

 

x x y

y x y

α β α β
γ δ γ δ

+    
=    +    
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Example 1. Let 

0
 : * .

0

t
G t K

t

  
= ∈  

  

 

 

Then the orbits under this action are drawn on the picture below: 

 

 
 
All the orbits, except for zero, are one dimensional and the closure of all 

contains the zero. 

 
The invariant regular functions are constants only: K[X]

G
=K. 

The field of invariant rational function is generated by : ( ) .Gx x
K X K

y y

 
=  

 

 

Example 2. 

1

.

0
: * .

0
−

   = ∈  
   

t
G t K

t

 

Orbits: 

 
 

All generic orbits are one dimensional and closed.  There are two one 
dimensional orbits the closure of them contains the zero. 

 

Invariant Regular functions: K[X]
G
=K[xy]. 

Invariant Rational functions: K(X)
G
=K( xy ). 
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Example 3. Let  

1
:

0 1

u
G u K

  
= ∈  

  

 

Orbits:  

 
 

Invariant Regular functions: K[X]
G
=K[y]. 

Invariant Rational function: K(X)
G
=K( y ). 

 
Let a group G acts on an algebraic variety X regularly. For simplicity, we 
assume that the base field K is algebraically closed and of characteristic 

zero. We can define an action of G on the K-algebra K[X] of regular 

functions on X: (gf)(x)=f(gx). Of special interest is the subalgebra of 
invariant functions which will be denoted by K[X]

G
. It carries a lot of 

information about the orbit structure and its geometry. 

 

The algebra of invariants was a major object of research in the last two 
centuries. There are a number of natural questions in this context: 

• Is the invariant algebra K[X]
G
 finitely generated as a K-algebra? 

• If so, can one determine an explicit upper bound for the degrees of a 

system of generators of K[X]
G
? 

• Are there algorithms to calculate a system of generators and what is 

their complexity? 

• If X is an irreducible how to describe K(X)
G
?  

• When K(X)
G
=QK[X]

G
? 

• Describe the orbits closures of the action of G? 

 
The first question is essentially HILBERT'S 14th problem, although his 

formulation was more general. The answer is positive for reductive groups 
by results of HILBERT, WEYL, MUMFORD, NAGATA and others, but 
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negative in general due to the famous counter example of NAGATA (in 

1959).  

 
The fourteenth Hilbert problem: The problem of description of all linear 

algebraic groups for which the algebra of invariant regular functions is finite 

generated as a K-algebra.  
 

Actually, we deal with the fourth and sixth questions of the above list for 

variety of non-Lie complex filiform Leibniz algebras in low dimensional 
case. In this case the field of rational invariant functions is described.   

 

4.  Complex filiform Leibniz algebras variety 

• Leibniz algebras. Nilpotent and Filiform Leibniz Algebras 

• Variety of algebras and Subvarieties 

• The isomorphism action GLn(C) on the variety of algebras (transport 

of structure) 

• Main results 

 
Let V  be a vector space of dimension n  over an algebraically closed field 

K  (char K =0). The bilinear maps × →V V V  form a vector space 

( )⊗ ,Hom V V V  of dimension 3n , which can be considered together with its 

natural structure of an affine algebraic variety over K  and denoted by 
3

( ) ≅ n

n
Alg K K . An n -dimensional algebra L  over K  may be considered 

as an element ( )Lλ  of ( )
n

Alg K  via the bilinear mapping : ⊗ →L L Lλ  

defining an binary algebraic operation on :L  let 1 2{ }, , ,
n

e e … e  be a basis of 

the algebra .L  Then the table of multiplication of L  is represented by point 

( )
k

ij
γ  of this affine space as follow: 

1

( ) ,
=

, =∑
n

k

i j ij k

k

e e eλ γ k

ij
γ  are called 

structural constants of .L  The linear reductive group ( )
n

GL K  acts on 

( )
n

Alg K  by 1 1( )( ) ( ( ( ) ( )))− −∗ , = ,g x y g g x g yλ λ  (“transport of structure”). 

Two algebras 1λ  and 2λ  are isomorphic if and only if they belong to the 

same orbit under this action. It is clear that elements of the given orbit are 

isomorphic to each other algebras. The classification means to specify the 
representatives of the orbits.  
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Definition 4.1. An algebra L  over a field K  is called a Leibniz algebra if it 

satisfies the following Leibniz identity:  

 

[ [ ]] [[ ] ] [[ ] ], , = , , − , , ,x y z x y z x z y  

 

where [ ]⋅,⋅  denotes the multiplication in .L  Let ( )
n

Leib K  be a subvariety of 

( )
n

Alg K  consisting of all n -dimensional Leibniz algebras over K. It is 

invariant under the above mentioned action of ( )
n

GL K . As a subset of 

( )
n

Alg K  the set ( )
n

Leib K  is specified by system of equations with 

respect to structural constants 
k

ij
γ :  

 

1

( ) 0
=

− + =∑
n

l m l m l m

jk il ij lk ik lj

l

γ γ γ γ γ γ  

 
It is easy to see that if the bracket in Leibniz algebra happens to be 

anticommutative then it is Lie algebra. So Leibniz algebras are 

“noncommutative” generalization of Lie algebras.   

 
Further all algebras assumed to be over the field of complex numbers.  

Let L  be a Leibniz algebra. We put:  

 
1 1 [ ]+= , = , , ∈ .k kL L L L L k N  

 
Definition 4.2. A Leibniz algebra L  is said to be nilpotent if there exists an 

integer ∈ ,s N  such that 1 2 {0}⊃ ⊃ ... ⊃ = .sL L L  The smallest integer s  for 

that 0=sL  is called the nilindex of L .  

 

Definition 4.3. An n -dimensional Leibniz algebra L  is said to be filiform if 

= − ,idimL n i  where 2 ≤ ≤ .i n   

 

There are two sources to get classification of non-Lie complex filiform 

Leibniz algebras. The first of them is the naturally graded non-Lie filiform 
Leibniz algebras and the another one is the naturally graded filiform Lie 

algebras [Gomez, Omirov, 2006]. Here we consider Leibniz algebras 

appearing from the naturally graded non-Lie filiform Leibniz algebras. 

According to the theorem presented in [Ayupov, Omirov, 2001] this class 
can be divided into two disjoint subclasses. 
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Theorem 4.4. Any ( 1)+n -dimensional complex non-Lie filiform Leibniz 

algebra obtained from the naturally graded filiform Leibniz algebras can be 

included in one of the following two classes of Leibniz algebras:  
 

a) (The first class): 

 

0 0 2

0 1

0 1 3 3 4 4 1 1

1 3 2 4 3 1

[ ]

[ ] 1 1

[ ]

[ ] 1 2

+

− −

+ + + −

, = ,
 , = , ≤ ≤ −
 , = + + ... + + ,
 , = + + ... + , ≤ ≤ −

i i

n n n

j j j n j n

e e e

e e e i n

e e e e e e

e e e e e j n

α α α θ
α α α

 

 
(omitted products are supposed to be zero)  

 
 

b) (The second class): 

 

0 0 2

0 1

0 1 3 3 4 4

1 1

1 3 2 4 3 1

[ ]

[ ] 2 1

[ ]

[ ]

[ ] 2 2

+

+ + + −

, = ,
 , = , ≤ ≤ − , = + + ... + ,
 , = ,


, = + + ... + , ≤ ≤ −

i i

n n

n

j j j n j n

e e e

e e e i n

e e e e e

e e e

e e e e e j n

β β β
γ

β β β

  

 
omitted products are supposed to be zero, where e0, e1,…, en  is a 
basis. 

 
In other words, the above theorem means that the above mentioned type of 

( 1)+n -dimensional non-Lie complex filiform Leibniz algebras can be 

represented as a disjoint union of two subsets and the algebras from the 
difference classes never are isomorphic to each other. The basis in the 

theorem is called “adapted”.  

 

Let denote by FLeibn+1 the variety of all non-Lie complex filiform Leibniz 
algebras from the first class and by SLeibn+1 the variety of all non-Lie 

complex filiform Leibniz algebras from the second class. Each of them is 

invariant under isomorphism action (“transport of structure”) of GLn+1. It is 
known [Gomez, Omirov, 2006] that the “transport of structure” action of 

GLn+1 can be  reduced to the action of subgroup of GLn+1 called adapted 

transformations. The next series of theorems are devoted to the description 
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of the field of invariant rational function. The generators are written as a 

function of structural constants 3 4, ,..., ,
n

α α α θ  and 3 4, , ..., ,
n

β β β γ  with 

respect to the adapted basis. 

 

 

MAIN RESULTS 

For the simplification and computational purpose we establish the 

following notations: 

 
2 3 4 5

3 3 4 4 3 5 5 3 6 6 3 7 7 32 5 , 14 , 42 ,

, 4,5,6,7.

∆ = , ∆ = + , ∆ = − ∆ = + ∆ = −

Θ = − =i i i i

α α α α α α α α α
α θ

 

 
Theorem 4.5. The transcendental degree of the field of invariant rational 

functions C(FLeib5)
G 

of  FLeib5 under the action of the adapted subgroup G 

of the group GL5 is one and it is generated by the following function: 

 
2

3
4

4

.
 ∆

= Θ ∆ 
F  

 
Theorem 4.6. The transcendental degree of the field of invariant rational 

functions C(FLeib6)
G 

of  FLeib6 under the action of the adapted subgroup G 
of the group GL6 is two and it is generated by the following functions:  

 

3 5 3 4
1 2

4

( 5 )
,

∆ ∆ + ∆ ∆
=

∆
F

3

3
2 5

4

.
 ∆

= Θ ∆ 
F  

 
Theorem 4.7. The transcendental degree of the field of invariant rational 
functions C(FLeib7)

G 
of  FLeib7 under the action of the adapted subgroup G 

of the group GL7 is three and it is generated by the following function:  

 

3 5 3 4
1 2

4

( 5 )
,

∆ ∆ + ∆ ∆
=

∆
F

2 2 2

3 6 3 5 3 4 4
2 3

4

( 6 9 3 )
( ,
∆ ∆ + ∆ ∆ + ∆ ∆ + ∆

=
∆

F  

4

3
3 6

4

.
 ∆

= Θ ∆ 
F  

 
Theorem 4.8. The transcendental degree of the field of invariant rational 

functions C(FLeib8)
G 

of  FLeib8 under the action of the adapted subgroup G 
of the group GL8 is four and it is generated by the following function:  
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3 5 3 4
1 2

4

( 5 )
,

∆ ∆ + ∆ ∆
=

∆
F  

2 2 2

3 6 3 5 3 4 4
2 3

4

( 6 9 3 )
,

∆ ∆ + ∆ ∆ + ∆ ∆ + ∆
=

∆
F  

2 2 3 5
3 7 3 6 3 4 3 5 4 5 3 4 3

3 3 4

4

7 28 14 7 7 42
,

∆ + ∆ ∆ + ∆ ∆ + ∆ ∆ + ∆ ∆ + ∆ ∆ +
= ∆

∆
F

α

5

3
4 7

4

.
 ∆

= Θ ∆ 
F  

 

Later on 2 2 3 3 4

1 3 5 4 2 3 6 4 3 3 7 44 5 , 4 7 , 8 21 .Λ = − Λ = − Λ = −β β β β β β β β β   

 
Theorem 4.9. The transcendental degree of the field of invariant rational 

functions C(SLeib5)
G 

of  SLeib5 under the action of the adapted subgroup G 
of the group GL5 is one and it is generated by the following function: 

 

2

3

.=G
γ
β

 

 

Theorem 4.10. The transcendental degree of the field of invariant rational 
functions C(SLeib6)

G 
of  SLeib6 under the action of the adapted subgroup G 

of the group GL6 is one and it is generated by the following function: 
 

2
3 4 3 1

2

2 + Λ
=G

β β γ β
γ  

 
Theorem 4.11. The transcendental degree of the field of invariant rational 
functions C(SLeib7)

G 
of  SLeib7 under the action of the adapted subgroup G 

of the group GL7 is two and it is generated by the following functions:  

 
3
1

1 2
2 4 1 4

( 3 2 )

Λ
= Λ − Λ +G β β γ , 

2
1

2 2
2 4 1 4

.
( 3 2 )

Λ
= Λ − Λ +G

γ
β β γ  

 
Theorem 4.12. The transcendental degree of the field of invariant rational 

functions C(SLeib8)
G 

of  SLeib8 under the action of the adapted subgroup G 
of the group GL8 is three and it is generated by the following functions:  

 
3
1

1 2
2 4 1

,
( 3 )

G β
Λ

= Λ − Λ
4 2
1 3 4 2 4 1 3 4

2
2 4 1

( 7 7 4 )
,

( 3 )
G

β β β β γ
β

Λ Λ − Λ − Λ +
= Λ − Λ

3
3 1

3 3
2 4 1

.
( 3 )

Λ
= Λ − ΛG

β γ
β  
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