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ABSTRACT
An analysis was done for the steady two-dimensional stagnation-point mixed convection
flow of an incompressible viscous fluid towards a stretching vertical permeable sheet in its
own plane. The stretching velocity and the surface temperature are assumed to vary linearly
with the distance from the stagnation-point. Two equal and opposite forces are impulsively
applied along the x-axis so that the wall is stretched, keeping the origin fixed in a viscous
fluid of constant ambient temperature. The transformed boundary layer equations were
solved numerically for some values of the parameters considered using an implicit finite
difference scheme known as the Keller-box method. Flow and heat transfer characteristics
were analyzed and discussed. Both cases of the assisting and opposing flows were considered
and it was found that dual solutions exist for the opposing flow, whereas a unique solution
resulted for the assisting flow.

Keywords: Boundary layer, heat transfer, mixed convection, permeable sheet,
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INTRODUCTION

The flow near a stagnation point has attracted many investigations during the past several
decades because of its wide applications in many practical applications such as cooling of
electronic devices by fans, cooling of nuclear reactors, and many hydrodynamic processes.
Hiemenz (1911) was the first to study the two-dimensional stagnation-point flow, and
obtained an exact similarity solution of the governing Navier-Stokes equations. Since then
many investigators have considered various aspects of such flow, and obtained closed-
form analytical as well as numerical solutions. Ramachandran et al. (1988) studied laminar
mixed convection in two-dimensional stagnation flows around heated surfaces by considering
both cases of an arbitrary wall temperature and arbitrary surface heat flux variations. They
found that a reverse flow developed in the buoyancy opposing flow region, and dual solutions
are found to exist for a certain range of the buoyancy parameter. This work was then extended
by Devi et al. (1991) for the unsteady case, and by Lok et al. (2005) for a vertical surface
immersed in a micropolar fluid. Dual solutions were found to exist by these authors for a
certain range of buoyancy parameter.
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All of the above-mentioned investigations considered the flow impinging normally to
a vertical or horizontal surface at rest. The stagnation point flows toward a surface which is
moved or stretched, have been considered for example by Chiam (1994, 1996), Mahapatra
and Gupta (2001, 2002), Nazar et al. (2004a,b) and more recently by Ishak et al. (2006a,b,
2007a). The aim of this study was to extend the work by Ishak et al. (2006b) for the case of
a permeable surface. A thorough review on the flow and heat transfer over a permeable
stretching surface can be found in Gupta and Gupta (1977), Dutta (1989), Watanabe (1991),
and Magyari and Keller (2000). In the actual manufacturing process, the stretched surface
speed and temperature play an important role in the cooling process. Furthermore, during
the manufacture of plastic and rubber sheets, it is often necessary to blow a gaseous medium
through the not-yet-solidified material. The study of flow field and heat transfer is necessary
for determining the quality of the final products.

PROBLEM FORMULATION AND BASIC EQUATIONS

Consider the stagnation flow of an incompressible viscous fluid normal to a vertical plate as
shown in Fig. 1. It is assumed that the ambient fluid is moved with a velocity ue (x) = ax in
the y-direction towards the stagnation point on the plate, where a is a constant and a ≥ 0. It
is also assumed that the surface is stretched in the x-direction such that the x-component of
the velocity and temperature vary linearly along it, i.e. uw (x) = bx iand  Tw (x) = T∞ + cx,
respectively, where b (>0) and c are arbitrary constants. Under these assumptions along
with the Boussinesq and boundary layer approximations, the system of equations which
model the boundary layer flow are given by

0,∂ ∂+ =
∂ ∂
u v
x y

(1)

( )
2

2 ,β ∞
∂ ∂ ∂+ = + ± −
∂ ∂ ∂

e
e

duu u uu v u v g T T
x y dx y (2)

2

2 ,α∂ ∂ ∂+ =
∂ ∂ ∂
T T Tu v
x y y

(3)

where u and v are the velocity components along the x and y axes, respectively, T is the fluid
temperature, g is the gravity acceleration, α, ν and β  are the thermal diffusivity, kinematic
viscosity and thermal expansion coefficients, respectively. The last term on the right-hand
side of Eq. (2) represents the influence of the thermal buoyancy force, with “+” and “–”
signs pertaining to the buoyancy assisting and opposing flow regions, respectively. Fig. 1
illustrates such a flow field for a vertical, heated surface with the upper half of the flow field
being assisted and the lower half of the flow field being opposed by the buoyancy force.
The reverse trend will occur if the plate is cooled below the ambient temperature. The
reported results are thus true for both the heated and cooled surface conditions when the
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appropriate (assisting and opposing) flow regions are selected (see Ramachandran et al.
(1988)). We shall assume that the boundary conditions of Eqs. (1) – (3) are

( )
, ( ), ( ) at 0,

, as .∞

= = = =
→ → → ∞

w w w

e

v V u u x T T x y
u u x T T y

(4)

In order for similarity solutions to exist, Vw has to be of the form (see Gupta and Gupta
(1977), Dutta (1989) and Ishak et al. (2007b,c,d,e,f))

( )1/ 2 ,ν γ= −wV b (5)

where γ = f(0), with  γ > (0) is for mass suction and  γ < (0) is for mass injection. The
continuity equation can be satisfied by introducing a stream function ψ such that

, .ψ ψ∂ ∂= = −
∂ ∂

u v
y x

(6)

The momentum and energy equations can be transformed to the corresponding ordinary
differential equations by the following substitutions:

( )
( )

( )
1/ 2

1/ 2, , .ψη η θ η
ν ν

∞

∞

− = = =  −  w

T Tb y f
T Tb x

(7)

The transformed ordinary differential equations are:

2 2'" " ' 0,ε λθ+ − + + =f ff f (8)

1 " ' ' 0,
Pr

θ θ θ+ − =f f (9)

Fig. 1: Physical model and coordinate system
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subject to the boundary conditions (4) which become

 
( ) ( ) ( )
( ) ( )
0 , ' 0 1, 0 1,

' , 0,
γ θ

ε θ
= = =

∞ → ∞ →
f f
f (10)

where ε = a/b, primes denote differentiation with respect to η, Pr is the Prandtl number and
the constant λ is the buoyancy or mixed convection parameter defined as

1/ 2 ,
Re

λ = ± x

x

Gr
(11)

with the “ ± ” sign having the same meaning as in Eq. (2). Further, Grx = gβ (Tw – T∞) x3/ν 2

is the local Grashof number and Rex = uw x/ν  is the local Reynolds number. It should be
noticed that λ > 0 and λ < 0 correspond to the assisting and opposing buoyant flows,
respectively. When λ = 0 and ε = 1, the solution of Eq. (8) subject to the boundary conditions
is given by

( ) .η η γ= +f (12)

The physical quantities of interest are the skin friction coefficient Cf and the local
Nusselt number Nux, which are defined as

( )2 , ,
/ 2

τ
ρ ∞

= =
−

w w
f x

ww

xqC Nu
k T Tu (13)

respectively, where the skin friction τw and the heat transfer from the plate qw are given by

0 0

, ,
= =

∂ ∂   = = −   ∂ ∂   
w w

y y

u Tq k
y y

τ µ (14)

with µ and k being the dynamic viscosity and thermal conductivity, respectively. Using the
non-dimensional variables (7), we get

( )1/ 2 1/ 21 Re "(0), / Re ' 0 .
2

θ= = −f x x xC f Nu (15)

Equations (8) and (9) subject to the boundary conditions (10) are solved numerically
by an implicit finite difference scheme. To support the validity of the numerical method
used, we get approximate solutions of Eqs. (8) and (9) subject to the boundary conditions
(10) valid for small values of ε. By investigating the terms in the governing equation, we
assume that the solution of Eqs. (8) and (9) near ε = 0 is of the form

( ) ( ) ( ) ( )
0 0

, ,η η ε θ η θ η ε
∞ ∞

= =
= =∑ ∑i i

i i
i i

f f (16)

where fi and θi are the perturbations in f and θ, respectively. Substituting expressions (16)
into Eqs. (8) and (9), and comparing the like terms of  ε gives the following set of equations:
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for i ≥ 1, subject to the boundary conditions
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for i ≥ 0, where δij is the delta Kronecker, which is defined by

1 if =
0 if

δ 
=  ≠

ij
i j
i j

The skin friction coefficient and the local Nusselt number (15) are approximately given
now, respectively, by

( ) ( ) ( )

( ) ( ) ( )

1/ 2 2
0 1 2

1/ 2 2
0 1 2

1 Re 0 0 0 ,
2

/ Re 0 0 0 .

ε ε

θ θ ε θ ε

′′ ′′ ′′= + +

 ′ ′ ′= − + + 

f x

x x

C f f f

Nu (20)

RESULTS AND DISCUSSION

Equations (8) and (9) subject to the boundary conditions (10) were solved numerically
using the Keller-box method, which is described in Cebeci and Bradshaw (1988). The results
shown are for a study on the influences of several non-dimensional parameters. The results
of the skin friction coefficient, local Nusselt number, velocity and temperature distributions
are illustrated in graphs, while the values of the skin friction coefficient and the local Nusselt
number for some parameters are given in tables.

Tables 1 and 2 show the values of the skin friction coefficient and the local Nusselt
number, respectively, for certain values of the related parameters. The values of the skin
friction coefficient f″ (0) obtained in this study are compared with those of Mahapatra and
Gupta (2002) and Nazar et al. (2004a,b), while the values of the local Nusselt number
–θ ′(0)  which represent the heat transfer rate at the surface are compared with those of Ali
(1995). The comparisons revealed good agreement.
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Therefore, the code that was developed can be used with highconfidence to study the
problem discussed in this paper. Moreover, to support the validity of the numerical method
used, the governing equations (8)-(10) were solved by using series expansion that are valid
for small values of the velocity ratio parameter ε (= a/b). The values of  f″ (0) and –θ ′(0)
obtained by using both methods are shown in Tables 3 and 4, respectively. The results show
excellent agreement for small ε. The values of  –θ ′(0) as shown in Tables 2 and 4 are

always positive. This follows from the integral relationship ( )
0

0 2 Prθ θ η
∞

′ ′− = ∫ f d  which
is obtained from Eqs. (9) and (10). Furthermore, the local Nusselt number as shown in
Table 2 increases with Pr. This is a result of the decreasing thermal boundary layer thickness
which implies an increase in the wall temperature gradient.

Fig. 2a shows the numerical results of the dimensionless skin friction coefficient for
various values of the suction/injection parameter γ  when Pr = 1 and ε = 1, while the respective
local Nusselt number are presented in Fig. 2b. It is seen from Fig. 2a that for Pr = 1 and
ε = 1, the values of f″ (0) are positive for the assisting flow (λ > 0), and negative for the
opposing flow (λ < 0). Physically, a positive sign of f″ (0) implies that the fluid exerts a

TABLE 1
The values of f ″(0) for various values of ε when Pr =1, λ = 0 and γ = 0

ε Mahapatra and Nazar et al. Nazar et al. Result of
Gupta (2002)  (2004a) (2004b) this study

0.01 - –0.9980 –0.9980 –0.9980
0.10 –0.9694 –.9694 –0.9694 –0.9694
0.20 –0.9181 –0.9181 –0.9181 –0.9181
0.50 –0.6673 –0.6673 –0.6673 –0.6673
2.00 2.0175 2.0176 2.0175 2.0175
3.00 4.7293 4.7296 4.7296 4.7294

10.00 - 36.2687 36.2687 36.2603

TABLE 2
The values of  –θ ′(0) for various values of γ and Pr when ε = 0 and λ = 0

Results of Ali (1995) Results of this study

γ Pr = 0.72 Pr = 1 Pr = 10 Pr = 0.72 Pr = 1 Pr = 10

–1.0 0.5436738 0.6167397 0.9404818 0.5455 0.6181 0.9418
–0.6 0.6322861 0.7420708 1.4674400 0.6345 0.7441 1.4709
–0.4 0.6679058 0.8076850 1.9593240 0.6866 0.8198 1.9681
–0.2 0.7417784 0.9018322 2.6984210 0.7446 0.9050 2.7096
0.0 0.8055581 0.9959655 3.7004690 0.8088 1.0000 3.7208
0.2 0.8758492 1.0999160 4.9436630 0.8798 1.1050 4.9765
0.4 0.9529272 1.2135290 6.3735120 0.9575 1.2198 6.4260
0.6 1.0364530 1.3364480 7.9392070 1.0420 1.3440 8.0178
1.0 - - - 1.2297 1.6180 11.4762
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drag force on the sheet and a negative sign implies the opposite. Moreover, all curves
intersect at a point where λ = 0, i.e. when the buoyancy force is absent. The value of f″ (0)
at this point is zero. This is not surprising since Eqs. (8) and (9) are uncoupled when λ = 0,
and the stretching velocity is equal to the ambient fluid velocity when ε = 1, which implies
skin friction τw = 0. This result is in agreement with the exact solution (12), which implies
f″ (η) = 0, for all η. In contrast, Fig. 2b shows that there are heat transfers from the sheet to
the fluid even when the skin friction is zero. This is because the sheet and the fluid are of
different temperatures. Figs. 2a and 2b show the existence of dual solutions for a certain
range of λ < 0 (opposing flow). The solution for a particular value of γ  exists up to a critical
value of λ (say λc). Beyond this value, the boundary layer separated from the surface, thus
we are unable to get the solution using the boundary layer approximations. To proceed with
the solution, the full Navier-Stokes equations have to be solved. It is evident from Figs. 2a

TABLE 4
The values of –θ ′(0) for various values of ε and λ when Pr = 1 and γ = 0

Numerical Eq. (15) Small ε Eq. (20)

ε λ = –0.1 λ = 1 λ = 10 λ = –0.71 λ = 1 λ = 10

0 0.9856 1.0873 1.3716 0.9856 1.0873 1.3716
0.01 0.9880 1.0881 1.3719 0.9881 1.0882 1.3719
0.05 0.9977 1.0921 1.3734 1.0013 1.0931 1.3737
0.1 1.0079 1.0982 1.3757 1.0250 1.1024 1.3769
0.2 1.0362 1.1133 1.3813 1.0963 1.1312 1.3862
0.5 1.1186 1.1714 1.4058 1.5016 1.2999 1.4382
1 1.2502 1.2827 1.4646
2 1.4855 1.5020 1.6154
5 2.0418 2.0473 2.0899

 TABLE 3
The values of  f″ (0) for various values of ε and λ when Pr = 1 and γ = 0

Numerical Eq. (15) Small ε Eq. (20)

ε λ = –0.1 λ = 1 λ = 10 λ = –0.1 λ = 1 λ = 10

0 –1.0513 –0.5608 2.3042 –1.0513 –0.5608 2.3042
0.01 –1.0490 –0.5596 2.3050 –1.0488 –0.5595 2.3050
0.05 –1.0372 –0.5528 2.3095 –1.0335 –0.5514 2.3102
0.1 –1.0176 –0.5398 2.3178 –1.0022 –0.5343 2.3207
0.2 –0.9638 –0.5002 2.3432 –0.8997 –0.4769 2.3547
0.5 –0.7075 –0.2846 2.4887
1 –0.0343 0.3350 2.9495
2 1.9899 2.2913 4.5884
5 11.7331 11.9449 13.6462
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(a) (b)
Fig. 3: (a) Velocity profiles f′ (η); (b) Temperature profiles θ (η), for various values of γ
when Pr = 1, ε = 1 and λ = –5

(a) (b)
Fig. 2: (a) Variations of f″ (0); (b) Variations of  –θ′(0), as a function of λ at selected values
of γ when Pr = 1 and ε = 1

and 2b that suction delays the boundary layer separation, while injection accelerates it. The
curve bifurcates at λ = λc, and the lower branch solution continues further and terminates at
a certain value of λ. It should be remarked that the computations have been performed until
the point where the solution did not converge, and the calculations were terminated at that
point. Figs. 3a and 3b depict the velocity and temperature profiles for selected values of the
parameters, which support the existence of dual solutions shown in Figs. 2a and 2b.

Figs. 4a and 4b show the velocity and temperature profiles for selected values of ε
when Pr = 1 and λ = 1. Fig. 4a, shows that when ε > 1, the flow has a boundary layer
structure and the thickness of the boundary layer decreases with increase in ε . According to
Mahapatra and Gupta (2002), for a fixed value of b corresponding to the stretching of the
surface, an increase in a in relation to b (such that a/b > 1) implies an increase in the
straining motion near the stagnation region resulting in increased acceleration of the external
stream, and this leads to the thinning of the boundary layer with an increase in ε. Further,
Fig. 4a shows that when ε  < 1, the flow has an inverted boundary layer structure. This is a
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(a) (b)

Fig. 4: (a) Velocity profiles f ′ (η); (b) Temperature profiles θ (η), for various values of ε
when Pr = 1 and λ = 1

result from the fact that when ε  < 1, the stretching velocity, bx, of the surface exceeds the
velocity, ax, of the external stream. Figs. 3 and 4 show that the boundary conditions (10)
are satisfied, which supports the validity of the results of this study.

CONCLUSIONS

This study concerned the theory of the problem of stagnation-point flow and heat transfer
towards a stretching vertical permeable sheet immersed in a viscous and incompressible
fluid. The governing boundary layer equations were solved numerically using an implicit
finite difference method. Both the skin friction coefficient and the local Nusselt number
increase with increasing buoyancy effects. Suction increases the heat transfer from the
surface, whereas injection causes a decrease. Moreover, suction delays the boundary layer
separation, while injection acts in the opposite. Dual solutions were found to exist for the
opposing flow, and Prandtl number enhances the heat transfer rate at the surface.
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